Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3090-3098    https://doi.org/10.11896/cldb.18120009
  无机非金属及其复合材料 |
直接碳固体氧化物燃料电池阳极材料的研究进展
张英杰1,2,吴昊1,曾晓苑1,2,李雪1,2,董鹏1,2,肖杰1,2,
1 昆明理工大学材料科学与工程学院,锂离子电池及材料制备技术国家地方联合工程实验室,云南省先进电池材料重点实验室(筹),昆明 650093
2 昆明理工大学冶金与能源工程学院,昆明 650093
Research Progress of the Anode Materials for Direct Carbon Solid Oxide Fuel Cells
ZHANG Yingjie1,2,WU Hao1,ZENG Xiaoyuan1,2,LI Xue1,2,DONG Peng1,2,XIAO Jie1,2,
1 National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology,Key Laboratory of Advanced Battery Mate-rials of Yunnan Province,Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093,China
2 Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,China
下载:  全 文 ( PDF ) ( 17847KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 如今,世界能源与环境问题日益严峻,其中煤炭、石油等化石燃料的粗放利用是一个很重要的原因,开发一种高效、清洁的煤炭利用技术已经迫在眉睫。直接碳固体氧化物燃料电池(Direct carbon solid oxide fuel cell, DC-SOFC)作为全固态的能量转换装置,可以直接采用固体碳作为燃料,将化学能直接转化为电能,理论上其能量转化效率接近100%。这种全固态的结构可以有效地避免液态金属阳极DCFC和复合电解质型DCFC电解液泄漏、腐蚀和由空气中的二氧化碳引起的电池性能衰减等问题。随着SOFC电池技术的迅速发展,DC-SOFC技术受到了越来越多研究者的关注,并有望成为新一代清洁能源技术。然而,由于采用固体电解质和固体碳燃料,DC-SOFC阳极反应过程复杂且影响因素众多,不同的阳极材料在性能上有着不同的表现。对此,国内外研究者为解释其阳极反应机理做了大量的工作,且不断尝试将各种新型材料用作DC-SOFC的阳极,并取得了一定的成果,对其阳极反应机理做出了合理的推断,在充分发挥DC-SOFC安全性和稳定性的同时大幅提升了其输出性能。目前,对于DC-SOFC的阳极机理,根据电池中碳燃料引入形式的不同,产生了两种不同的理论,且均有合理的实验数据支撑。而已经报道的DC-SOFC阳极材料除了最早的贵金属Pt阳极材料以外,主要有以Ni-YSZ为代表的Ni基复合金属陶瓷阳极材料、以Cu-Ni-YSZ为代表的Cu基复合金属陶瓷阳极材料、以Ag-GDC为代表的Ag基复合金属陶瓷阳极材料及以LST或LSCT为代表的混合离子和电子导体阳极材料 (MIECs)。大量研究表明,在金属陶瓷阳极中加入Fe、Sn等具有催化功能的元素能有效增加电池的输出功率,提高燃料的利用效率。这些材料虽然在输出性能上表现不一,但是均存在各自的优势,为DC-SOFC的研究提供了不同的思路。此外,以现有材料为基础,对阳极结构进行优化,进一步提升电池的输出性能,也为未来的阳极材料研究提供了新的方向。本文系统地总结并分析了DC-SOFC阳极结构特性、反应机理以及各类不同阳极材料的最新研究进展,展望了直接碳固体氧化物燃料电池阳极材料的未来发展方向,以期为DC-SOFC阳极材料的高效研究提供有价值的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张英杰
吴昊
曾晓苑
李雪
董鹏
肖杰
关键词:  直接碳固体氧化物燃料电池  阳极材料  复合金属陶瓷材料  混合离子和电子导体    
Abstract: Nowadays, the global energy crisis and environment pollution become increasingly severer, among which the extensive utilization of fossil fuels such as coal and petroleum is a critical reason. Hence it is urgent to develop an efficient and clean coal utilization technology. Direct carbon solid oxide fuel cell (DC-SOFC), as an all-solid-state energy conversion device, can directly use solid carbon as a fuel, converting the chemical energy into electricity. Theoretically, its energy conversion efficiency is close to 100%, which has unique advantages in the clean use of coal, such as without the use of any liquid metal or feeding gas as medium. This all-solid-state structure can effectively avoid several problems, such as electrolyte leakage, corrosion and performance degradation due to carbon dioxide in the air, which may occur in liquid metal anode DCFC and composite-electrolyte DCFC. With the rapid development of SOFC technology, DC-SOFC has attracted more and more researchers’ attentions and is expected to become a new generation of clean energy technology.
Due to the use of solid electrolytes and solid carbon materials, the anodic reaction process is complex and there are many influencing factors. To address these issues, researchers all around the world have done a lot of work to unravel the anode reaction mechanism, and constantly try to develop various novel anode materials of DC-SOFC. Some acceptable results had been obtained, for example, some reasonable anode reaction mechanisms had been proposed.
At present, two different mechanisms of DC-SOFC anode reaction have appeared according to the different forms of carbon fuel feeding into the cell. Besides the earliest noble metal of Pt anodes, the reported anode materials of DC-SOFC mainly includes Ni-based composite cermet, Cu-based composite cermet, Ag-based composite cermet and mixed ionic and electronic conductors (MIECs), which are represented by Ni-YSZ, Cu-Ni-YSZ, Ag-GDC and LST, respectively. A large number of studies have shown that the addition of Fe, Sn and other elements with catalytic effects in the cermet anode can effectively boost the output power of the cell and improve the utilization efficiency of the fuel. Although these materials have different output performance, they all have their own advantages, which provide different ideas for the research of DC-SOFC. In addition, based on the existing materials, further optimization of the anode mechanism to improve the output performance of DC-SOFC also indicates a new direction for the future of anode research.
In this paper, the DC-SOFC anode structure characteristics, reaction mechanism and the latest research progress of various anode materials are systematically summarized and analyzed, and the future development direction and perspectives of the anodes for direct carbon solid oxide fuel cell are outlined, in order to provide a more valuable reference to DC-SOFC anodes study.
Key words:  direct carbon solid oxide fuel cells    anode materials    composite cermet material    mixed ionic and electronic conductors
                    发布日期:  2020-01-03
ZTFLH:  O646  
基金资助: 国家自然科学基金(51764029;51604132);云南省应用基础研究计划(2015FD007;2017FB085)
通讯作者:  jiexiao@kmust.edu.cn   
作者简介:  张英杰,昆明理工大学党委书记,教授,博士研究生导师。1984年获得哈尔滨工业大学应用化学专业工学学士学位,1987年获应用电化学专业工学硕士学位,1999年获昆明理工大学有色金属冶金专业工学博士学位。主要研究方向为电化学防护与环保和电化学能源,主持并完成省部级科研项目17 项;吴昊,2017 年本科毕业于河南科技大学材料成型及控制工程专业,获得工学学士学位。现为昆明理工大学材料工程专业硕士研究生,师从张英杰教授,主要研究方向为直接碳固体氧化物燃料电池;肖杰,昆明理工大学冶金与能源工程学院讲师。2009年7月本科毕业于华南理工大学应用化学专业,2014年获得华南理工大学应用化学专业工学博士学位。主要研究方向为燃料电池和电催化新材料,包括固体氧化物燃料电池、直接碳燃料电池以及金属空气电池。主持并完成云南省自然科学基金1项。
引用本文:    
张英杰,吴昊,曾晓苑,李雪,董鹏,肖杰. 直接碳固体氧化物燃料电池阳极材料的研究进展[J]. 材料导报, 2020, 34(3): 3090-3098.
ZHANG Yingjie,WU Hao,ZENG Xiaoyuan,LI Xue,DONG Peng,XIAO Jie. Research Progress of the Anode Materials for Direct Carbon Solid Oxide Fuel Cells. Materials Reports, 2020, 34(3): 3090-3098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120009  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3090
1 Liu J, Zhou M, Zhang Y, et al. Energy Fuels, 2018, 32(4), 4107.
2 Jiang C, Ma J, Corre G, et al.Chemical Society Reviews, 2017, 46(10), 2889.
3 Cao T, Huang K, Shi Y, et al.Energy & Environmental Science, 2017, 10(2), 460.
4 Dicks A L.Current Opinion in Solid State and Materials Science, 2004, 8(5), 379.
5 Zecevic S, Patton E M, Parhami P. Chemical Engineering Communications, 2005, 192(12), 1655.
6 Nakagawa N, Ishida M.Industrial & Engineering Chemistry Research, 1988, 27(7), 1181.
7 Ihara M.Journal of the Electrochemical Society, 2006, 153(8), A1544.
8 Ihara M, Matsuda K, Sato H, et al.Solid State Ionics, 2004, 175(1-4), 51.
9 Li C, Shi Y, Cai N.Journal of Power Sources, 2011, 196(2), 754.
10 Bonaccorso A D, Jiang C, Ma J, et al. International Journal of Hydrogen Energy, 2016, 41(41), 18788.
11 Yu X, Shi Y, Wang H, et al. Journal of Power Sources, 2013, 243(6), 159.
12 Siengchum T, Guzman F, Chuang S S C. Journal of Power Sources, 2012, 213(213), 375.
13 Xie Y, Tang Y, Liu J. Journal of Solid State Electrochemistry, 2013, 17(1), 121.
14 Xu H, Chen B, Zhang H, et al. Applied Thermal Engineering, 2017, 118, 652.
15 Abdalla A M, Hossain S, Azad A T, et al. Renewable and Sustainable Energy Reviews, 2018, 82, 353.
16 Ringuedé A, Labrincha J A, Frade J R. Solid State Ionics, 2001, 141(5), 549.
17 Khan M S, Lee S B, Song R H, et al. Ceramics International, 2016, 42(1), 35.
18 Prakash B S, Kumar S S, Aruna S T. Renewable and Sustainable Energy Reviews, 2014, 36, 149.
19 Koide H, Someya Y, Yoshida T, et al. Solid State Ionics, 2000, 132(3-4), 253.
20 Wu Y, Su C, Zhang C, et al. Electrochemistry Communications, 2009, 11(6), 1265.
21 Liu R, Zhao C, Li J, et al. Journal of Power Sources, 2010, 195(2), 480.
22 Bai Y, Liu Y, Tang Y, et al. International Journal of Hydrogen Energy, 2011, 36(15), 9189.
23 Jiao Y, Xue X, An W, et al. International Journal of Energy Research, 2019, 43(7), 2501.
24 An W, Sun X, Jiao Y, et al. International Journal of Energy Research, 2019, 43(7), 2514.
25 Koh J H, Yoo Y S, Park J W, et al. Solid State Ionics, 2002, 149(3), 157.
26 Xiao J, Xie Y, Liu J, et al. Journal of Power Sources, 2014, 268(4), 508.
27 Ideris A, Croiset E, Pritzker M, et al.International Journal of Hydrogen Energy, 2017, 42(36), 23118.
28 Ideris A, Croiset E, Pritzker M.International Journal of Hydrogen Energy, 2017, 42(14), 9180.
29 Gondolini A, Mercadelli E, Sangiorgi A, et al.Journal of the European Ceramic Society, 2017, 37(3), 1023.
30 Prakash B S, Pavitra R, Kunmar S S, et al.Ceramics International, 2017, 43(15), 12138.
31 Gür T M.Chemical Reviews, 2013, 113(8), 6179.
32 Morishita T, Hirabayashi T, Okuni T, et al.Journal of Power Sources, 2006, 160(1), 638.
33 Yu B, Zhao Y,Li Y.Journal of Power Sources, 2016, 306, 387.
34 Jang H, Eom J, Ju H K, et al.RSC Advances, 2016, 6(110), 109036.
35 Xu K, Li Z, Shi M, et al.Proceedings of the Combustion Institute, 2017, 36(3), 4435.
36 Jang H, Eom J, Ju H K, et al. Catalysis Today, 2015, 260, 158.
37 Ishihara T, Yan J, Shinagawa M, et al. Electrochimica Acta, 2006, 52(4), 1645.
38 Yu F, Zhang Y, Yu L, et al. International Journal of Hydrogen Energy, 2016, 41(21), 9048.
39 Shin T H, Ida S, Ishihara T.Journal of the American Chemical Society, 2011, 133(48), 19399.
40 Liu J, Qiao J, Yuan H, et al.Electrochimica Acta, 2017, 232, 174.
41 Liu J, Yuan H, Qiao J, et al.Journal of Materials Chemistry A, 2017, 5(33), 17216.
42 Wu W, Zhang Y, Ding D, et al.Advanced Materials, 2018, 30(4), 1704745.
43 Park S, Vohs J M,Gorte R J.Nature, 2000, 404, 265.
44 Kim H, Lu C, Worrell W L, et al.Journal of the Electrochemical Society, 2002, 149(3), 2768.
45 Dudek M, Tomov R I, Wang C.Electrochimica Acta, 2013, 105(26), 412.
46 Hao W, Mi Y.RSC Advances, 2016, 6(55), 50201.
47 Cantos-Gómez A, Ruiz-bustos R,Van D J.Fuel Cells, 2015, 11(1), 140.
48 Tang Y, Liu J.International Journal of Hydrogen Energy, 2010, 35(20), 11188.
49 Xie Yongmin, Wang Xiaoqiang, Liu Jiang, et al.Acta Physico-Chimica Sinica, 2017, 33(2), 386 (in Chinese).
谢永敏, 王晓强, 刘江, 等.物理化学学报, 2017, 33(2), 386.
50 Cai W, Liu J, Liu P, et al.International Journal of Energy Research, 2019, 43(7), 2468.
51 Cai W, Liu J, Yu F, et al.International Journal of Hydrogen Energy, 2017, 42(33), 21167
52 Cai W, Zhou Q, Xie Y, et al.Applied Energy, 2016, 179, 1232.
53 Zhou Q, Cai W, Zhang Y, et al.Biomass and Bioenergy, 2016, 91, 250.
54 Zhang L, Xiao J, Xie Y, et al.Journal of Alloys and Compounds, 2014, 608, 272.
55 Cheng Z, Wang J H, Choi Y M, et al. Energy & Environmental Science, 2011, 4, 4380.
56 Tiwari P K, Yue X, Irvine J T S, et al. Journal of the Electrochemical Society, 2017, 164(9), F1030.
57 Flores J J A, Rodriguez M L A, Espinosa G A, et al.International Journal of Hydrogen Energy, DOI:10.1016/j.ijhydene.2018.05.171.
58 Singh S, Jha P A, Presto S, et al.Journal of Alloys and Compounds, 2018, 748, 637.
59 Kulkarni A, Giddey S, Badwal S P S, et al.Electrochimica Acta, 2014, 121(3), 34.
60 Zhu X, Li Y, Lu Z. International Journal of Hydrogen Energy, 2016, 41(9), 5057.
61 Li J, Wei B, Yue X, et al.ChemSusChem, 2018, 11(1), 254.
62 Li J, Wei B, Wang C, et al.International Journal of Hydrogen Energy, 2018, 43(27), 12358.
63 Liu Q, Dong X, Xiao G, et al.Advanced Materials, 2010, 22(48), 5478.
64 Meng X, Liu X, Han D, et al. Journal of Power Sources, 2014, 252, 59.
65 Gao J, Meng X, Luo T, et al.International Journal of Hydrogen Energy, 2017, 42(29), 18499.
66 Li Y, Chen X, Yang Y, et al.ACS Substainable Chemistry & Enginee-ring, 2017, 5(12), 11403.
67 Xiao J, Han D, Yu F, et al.Journal of Alloys and Compounds, 2016, 688, 939.
68 Fan L, Wang J, Zhao L, et al.Electrochimica Acta, 2018, 284, 630.
69 Sun K, Liu J, Feng J, et al.Journal of Power Sources, 2017, 365, 109.
[1] 周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[2] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed