Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22040039-6    https://doi.org/10.11896/cldb.22040039
  无机非金属及其复合材料 |
钢渣-偏高岭土基导电地聚合物的压敏性能研究
马彬, 黄启钦, 肖薇薇*, 黄小林
桂林电子科技大学建筑与交通工程学院,广西 桂林 541004
Piezoresistive Property of Steel Slag-Metakaolin Based Conductive Geopolymer
MA Bin, HUANG Qiqin, XIAO Weiwei*, HUANG Xiaolin
School of Architecture and Transportation Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 13326KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以钢渣和偏高岭土为主要原材料制备导电地聚合物,分析了钢渣掺量和养护温度对其抗压强度、电阻率、压敏性能以及微观结构的影响规律,并对其压敏性能进行了评估。结果表明:随着养护龄期的延长和养护温度的升高,试样抗压强度均有一定的增加,其中钢渣掺量为30%时试样抗压强度最高。在不同养护温度下,钢渣掺量越多,试样电阻率越低。养护温度的升高提升了试样早期物理力学性能,然而随着龄期延长,温度对试样电阻率的影响变弱。此外,在循环压缩荷载作用下,试样的最优应变灵敏度为40.35~50.31,远高于电阻应变片的灵敏度2。其中,当养护温度为40 ℃、钢渣掺量为30%时,试样电阻变化率(FCR)与循环压缩应力的相关系数R2高达0.953,试样压敏稳定性最优。由微观分析可知,当养护温度为60 ℃时,试样微观结构最为致密,稳定性最好,致使其应变灵敏度较低。在相同养护温度下,随着钢渣掺量的增加,试样致密性先增强后减弱,其中SS-30组最优,该结果与强度结果吻合较好。可见,钢渣-偏高岭土基导电地聚合物将是一种理想的压敏基体材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马彬
黄启钦
肖薇薇
黄小林
关键词:  导电地聚合物  压敏性能  抗压强度  钢渣掺量  养护温度    
Abstract: Conductive geopolymer was prepared with steel slag and metakaolin as main raw material. Meanwhile the influence of steel slag mixing amount and curing temperature on compressive strength, electrical resistivity, piezoresistive property and microstructure were analyzed, and then piezoresistive property was evaluated. The results show that with the increase of curing period and curing temperature, compressive strength of specimen is all increased somewhat, among which the compressive strength is the highest when steel slag mixing amount is 30%. Another, at different curing temperatures, the more the steel slag is mixed, the lower the electrical resistivity of specimen. Increase of curing temperature improves early physical and mechanical properties of specimen. However, with the growth of curing period, influence of temperature on the electrical resistivity of specimen becomes weaker. In addition, under the stress of cyclic compression load, the optimal strain sensitivity of specimen is 40.35—50.31, which is much higher than that of the resistance strain sheet (strain sensitivity is 2). Among them, when curing temperature is 40 ℃ and steel slag mixing amount is 30%, the correlation coefficient R2 between FCR and cyclic compression stress is as high as 0.953, and the piezoresistive stability is optimal. At last, microscopic analysis shows that when curing temperature is 60 ℃, microstructure is the most compact and has the best stability, resulting in a low strain sensitivity. At the same curing temperature, with increase of steel slag mixing amount, the density of specimen is first enhanced and then weakened, and the SS-30 group is optimal, which is in good agreement with the strength results. Obviously, the steel slag-metakaolin based conductive geopolymer will be an ideal piezoresistive matrix material.
Key words:  conductive geopolymer    piezoresistive property    compressive strength    steel slag mixing amount    curing temperature
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TU528.41  
基金资助: 国家自然科学基金(12162010);广西科技基地和人才专项(AD19245143);广西自然科学基金(2021GXNSFAA220087)
通讯作者:  *肖薇薇,桂林电子科技大学建筑与交通工程学院工程师。2010年上海交通大学结构工程专业毕业,获得工学博士学位。目前主要从事混凝土结构、膜结构和工程项目管理的研究,在国内外学术期刊发表论文10余篇。   
作者简介:  马彬,桂林电子科技大学建筑与交通工程学院高级实验师、硕士研究生导师。2016年中南大学工程力学专业毕业,获得工学博士学位。目前主要从事建筑节能材料和计算力学的研究,在国内外学术期刊发表论文10余篇。
引用本文:    
马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
MA Bin, HUANG Qiqin, XIAO Weiwei, HUANG Xiaolin. Piezoresistive Property of Steel Slag-Metakaolin Based Conductive Geopolymer. Materials Reports, 2024, 38(6): 22040039-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040039  或          https://www.mater-rep.com/CN/Y2024/V38/I6/22040039
1 Zhao Y R, Guan H, Hou M L, et al. Journal of Functional Materials, 2023, 54(4), 4216(in Chinese).
赵燕茹, 关鹤, 侯明良, 等. 功能材料, 2023, 54(4), 4216.
2 Zhou H, Chen L D. China Concrete and Cement Products, 1992(4), 12 (in Chinese).
周浩, 陈隆道. 混凝土与水泥制品, 1992(4), 12.
3 Kong D Y, Zhang J Z, Ni T Y, et al. Journal of the Chinese Ceramic Society, 2009, 37(1), 151 (in Chinese).
孔德玉, 张俊芝, 倪彤元, 等. 硅酸盐学报, 2009, 37(1), 151.
4 Camacho-Ballesta C, Zornoza E, Garces P. Advances in Cement Research, 2015, 28(4), 1.
5 Donnini J, Bellezze T, Corinaldesi V. Journal of Building Engineering, 2018, 20, 8.
6 Du J, Tang C, Jia B, et al. Key Engineering Materials, 2016, 680, 361.
7 Bai Y H, Tu R, Chen W. Journal of Hubei University of Technology, 2018, 33(1), 79 (in Chinese).
白应华, 涂锐, 陈伟. 湖北工业大学学报, 2018, 33(1), 79.
8 Qian J S, Li C T, Tang Z Q, et al. Journal of Building Materials, 2005, 8(3), 233 (in Chinese).
钱觉时, 李长太, 唐祖全, 等. 建筑材料学报, 2005, 8(3), 233.
9 Huang X M, Rao J L, Du K. Mining Safety & Environmental Protection, 2023, 50(6), 92(in Chinese).
黄学满, 饶吉来, 杜凯. 矿业安全与环保, 2023, 50(6), 92.
10 Ma Y, Yang X, Hu J, et al. Composites Part B: Engineering, 2019, 177, 107367.
11 Li N, Shi C J, Zhang Z H. Composites Part B: Engineering, 2019, 171, 34.
12 Rovnaník P, Kusák I, Bayer P, et al. Cement and Concrete Research, 2019, 118, 84.
13 Liu W S, Guo Y J, Hu J, et al. Journal of the Chinese Ceramic Society, 2021, 49(7), 1510 (in Chinese).
刘卫森, 郭英健, 胡捷, 等. 硅酸盐学报, 2021, 49(7), 1510.
14 Zhao L J, Zhang F. Materials Reports, 2020, 34(S2), 01319 (in Chinese).
赵立杰, 张芳. 材料导报, 2020, 34(S2), 01319.
15 Li Y Y, Hu C R. Experimental design and data processing(3rd edition), Chemical Industry Press, China, 2017, pp.3(in Chinese).
李云雁, 胡传荣. 试验设计与数据处理(第三版), 化学工业出版社, 2017, pp.3.
16 Wu Z L, Zhu X Y, Deng Y F, et al. China Journal of Highway and Transport, 2017, 30(9), 18(in Chinese).
吴子龙, 朱向阳, 邓永锋, 等. 中国公路学报, 2017, 30(9), 18.
17 Zheng J R, Qin W Z, Zhang T. Journal of Hunan University(Natural Sciences), 2004, 31(4), 60 (in Chinese).
郑娟荣, 覃维祖, 张涛. 湖南大学学报(自然科学版), 2004, 31(4), 60.
18 Peng H, Li S L, Cai C S, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(11), 2809 (in Chinese).
彭晖, 李树霖, 蔡春声, 等. 硅酸盐通报, 2014, 33(11), 2809.
19 Yip C K, Lucky G C, Deventer J S J. Cement and Concrete Research, 2005, 35(9), 1688.
20 Cai J M, Pan J L, Li X P, et al. Construction and Buiding Materials, 2020, 234, 117868.
21 Cao Y L, Xu J X, Jiang L H, et al. Acta Materiae Compositae Sinica, 2018, 35(4), 957 (in Chinese).
曹亚龙, 徐金霞, 蒋林华, 等. 复合材料学报, 2018, 35(4), 957.
22 Liu H, Sun M Q, Li J, et al. Journal of Functional Materials, 2015, 46(16), 16064 (in Chinese).
刘衡, 孙明清, 李俊, 等. 功能材料, 2015, 46(16), 16064.
23 Wang L N, Aslani F. Ceramics International, 2021, 47, 7864.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[3] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[4] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[5] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[6] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[7] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[8] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[9] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[10] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[11] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[12] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[13] 宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
[14] 闵前燊, 辜涛, 何波, 魏仁杰, 刘川北, 张礼华, 刘来宝. 电石渣对CO2拌和水泥浆性能及固碳效能的影响[J]. 材料导报, 2024, 38(23): 23090082-6.
[15] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed