Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 21120034-5    https://doi.org/10.11896/cldb.21120034
  金属与金属基复合材料 |
镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制
王淼1, 刘延辉1,2,3,*, 刘昭昭1
1 陕西科技大学机电工程学院,西安 710021
2 西北工业大学材料科学与工程学院,西安 710072
3 浙江温州轻工研究院,浙江 温州 325002
Effect of Incomplete Dynamic Recrystallization Microstructure on Mechanical Properties and Fracture Mechanism of Nickel-based Superalloy
WANG Miao1, LIU Yanhui1,2,3,*, LIU Zhaozhao1
1 School of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
2 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
3 Zhejiang Wenzhou Research Institute of Light Industry, Wenzhou 325002, Zhejiang, China
下载:  全 文 ( PDF ) ( 27148KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作对热等静压态镍基高温合金FGH4096在变形温度为1 080 ℃、应变速率为3 s-1的条件下进行等温变形,最大变形量为50%,进而研究高温变形过程中该合金组织演变规律,并选取具有典型形变组织的区域在700 ℃、0.001 s-1条件下进行力学性能测试。基于光学显微镜(OM)、扫描电镜(SEM)和电子背散射衍射技术(EBSD)对显微组织和断口的分析测试结果,发现热变形过程中产生的不完全动态再结晶组织从试样截面中心到边缘区域再结晶程度依次降低,中心部位抗拉强度可达到1 422.79 MPa,屈服强度为1 110.3 MPa,延伸率为10.15%。再结晶晶粒形核首先发生在晶界处,形核方式主要为晶界凸出形核。不完全动态再结晶组织中的变形晶粒内部存在亚晶界,对位错的运动起到阻碍作用,使得合金强度提高。合金断口形貌为韧窝状和撕裂棱的混合结构,断裂方式为穿晶断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王淼
刘延辉
刘昭昭
关键词:  FGH4096合金  不完全动态再结晶  力学性能  断口分析    
Abstract: The isothermal deformation of hot isostatic pressed nickel-based superalloy FGH4096 was carried out at 1 080 ℃ and 3 s-1 strain rate, and the maximum deformation was 50%. The microstructure evolution of the alloy during high temperature deformation was studied, and the mechanical properties of the region with typical deformation microstructure were tested at 700 ℃ and 0.001 s-1. Meanwhile, the microstructure and fracture were analyzed by optical microscope (OM), scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). It is found that the recrystallization degree of the incomplete dynamic recrystallization structure decreases from the center to the edge of the sample section, and the tensile strength of the center region is 1 422.79 MPa, the yield strength is 1 110.3 MPa and the elongation is 10.15%. The nucleation of recrystallized grains first occurs at grain boundaries and the nucleation mode is mainly protruding grain boundaries. In the incomplete dynamic recrystallized structure, there are subgrain boundaries in the deformed grains, which hinder the dislocation movement and improve the strength of the alloy. The fracture morphology is a mixture of dimple and tearing edge, and the fracture mode is transgranular fracture.
Key words:  FGH4096 superalloy    incomplete dynamic recrystallization    mechanical property    fracture analysis
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TG113  
基金资助: 国家自然科学基金(51805308);中国博士后科学基金(2018M631189);陕西省自然科学基金(2019JQ-303;2018JQ5161);温州市科技项目(G20180032)
通讯作者:  *刘延辉,陕西科技大学机电工程学院副教授、硕士研究生导师。2017年毕业于西北工业大学,获工学博士学位。主要从事航空航天材料高温变形行为及组织演变研究。以第一作者在国内外期刊发表学术论文10余篇。   
作者简介:  王淼,2016年6月于陕西科技大学获得工学学士学位,现为陕西科技大学机电工程学院硕士研究生,在刘延辉副教授的指导下进行研究。目前主要从事航空航天材料高温变形行为及组织演变研究。
引用本文:    
王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
WANG Miao, LIU Yanhui, LIU Zhaozhao. Effect of Incomplete Dynamic Recrystallization Microstructure on Mechanical Properties and Fracture Mechanism of Nickel-based Superalloy. Materials Reports, 2024, 38(6): 21120034-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.21120034  或          https://www.mater-rep.com/CN/Y2024/V38/I6/21120034
1 Shi C X, Zhong Z Y. Acta Metallurgica Sinica, 2010, 46(11), 1281(in Chinese).
师昌绪, 仲增墉. 金属学报, 2010, 46(11), 1281.
2 Du J H, Lyu X D, Dong J X, et al. Acta Metallurgica Sinica, 2019, 55(9), 1115(in Chinese).
杜金辉, 吕旭东, 董建新, 等. 金属学报, 2019, 55(9), 1115.
3 Zhang G Q, Zhang Y W, Zheng L, et al. Acta Metallurgica Sinica, 2019, 55(9), 1133(in Chinese).
张国庆, 张义文, 郑亮, 等. 金属学报, 2019, 55(9), 1133.
4 Qu X H, Zhang G Q, Zhang L. Journal of Aeronautical Materials, 2014, 34(1), 1(in Chinese).
曲选辉, 张国庆, 章林. 航空材料学报, 2014, 34(1), 1.
5 Zhang Y W, Liu J T. Materials China, 2013, 32(1), 1(in Chinese).
张义文, 刘建涛. 中国材料进展, 2013, 32(1), 1.
6 Ding Q Q, Bei H B, Yao X, et al. Applied Materials Today, 2021, 23, 101061.
7 Si J Y, Liu S H, Chen L. Solid State Phenomena, 2019, 298, 43.
8 Sreenu B, Sarkar R, Kumar S S S, et al. Materials Science & Enginee-ring A, 2020, 797, 140254.
9 Qiu C L, Yang D L, Wang G Q, et al. Materials Science & Engineering A, 2020, 769, 138461.
10 Hu B F, Tian G F, Jia C C, et al. Journal of Aeronautical Materials, 2007(4), 80(in Chinese).
胡本芙, 田高峰, 贾成厂, 等. 航空材料学报, 2007(4), 80.
11 Guo W M, Wu J T, Zhang F G, et al. Journal of Iron and Steel Research International, 2006, 13(5), 4.
12 Ning Y Q, Yuan S C, Sun Z Y, et al. Rare Metal Materials and Engineering, 2017, 46(2), 527(in Chinese).
宁永权, 袁士翀, 孙朝远, 等. 稀有金属材料与工程, 2017, 46(2), 527.
13 Gao J, Luo J, Li M Q. Journal of Aeronautical Materials, 2012, 32(6), 37(in Chinese).
高峻, 罗皎, 李淼泉. 航空材料学报, 2012, 32(6), 37.
14 Ning Y Q, Yao Z K, Yue T W, et al. Rare Metal Materials and Engineering, 2009, 38(10), 1783(in Chinese).
宁永权, 姚泽坤, 岳太文, 等. 稀有金属材料与工程, 2009, 38(10), 1783.
15 Kolb M, Freund L P, Fischer F, et al. Acta Materialia, 2018, 145, 247.
16 Shi D F, Zhang Z J, Hu J H, et al. Fatigue & Fracture of Engineering Materials & Structures, 2020, 44(3), 822.
17 Yao Y. Research on microstructure evolution low of TA18 titanium alloy during isothermal hot shear bending deformation. Master's Thesis, Harbin Institute of Technology, China, 2020(in Chinese).
姚燕. TA18钛合金热剪切弯曲变形过程微观组织演变规律研究. 硕士学位论文, 哈尔滨工业大学, 2020.
18 Hou Q, Tao Y, Jia J. Journal of Materials Engineering, 2019, 47(3), 94(in Chinese).
侯琼, 陶宇, 贾建. 材料工程, 2019, 47(3), 94.
19 Ren Y B. Preparation and hot deformation behavior of TiAl-based alloys with bimodal grain size distribution. Master's Thesis, Changchun University of Technology, China, 2021(in Chinese).
任轶博. 双峰晶粒尺寸分布的TiAl基合金制备及热变形行为研究. 硕士学位论文, 长春工业大学, 2021.
20 Fan X M, Xu L J. Foundry Technology, 2017, 38(12), 2796(in Chinese).
范晓嫚, 徐流杰. 铸造技术, 2017, 38(12), 2796.
21 Li J Y, Huang P W, Ren X P, et al. Light Alloy Fabrication Technology, 2007(8), 42(in Chinese).
李静媛, 黄佩武, 任学平, 等. 轻合金加工技术, 2007(8), 42.
22 Li X W. The mechanical properties and damage behavior of dual structure superalloy at intermediate temperature. Ph.D. Thesis, University of Science and Technology of China, China, 2019(in Chinese).
李相伟. 双组织高温合金的中温力学性能和损伤行为. 博士学位论文, 中国科学技术大学, 2019.
23 Tang C, Cheng S J, Qu J L, et al. Rare Metal Materials and Enginee-ring, 2021, 50(9), 3280(in Chinese).
唐超, 程世君, 曲敬龙, 等. 稀有金属材料与工程, 2021, 50(9), 3280.
24 Wu D, Tian L X, Ma Z L, et al. Materials Reports, 2016, 30(12), 76(in Chinese).
武丹, 田礼熙, 马朝利, 等. 材料导报, 2016, 30(12), 76.
25 Sui S, Zhong C L, Chen J, et al. Journal of Alloys and Compounds, 2018, 740, 389.
26 An X L, Zhang B, Chu C L, et al. Materials Science and Engineering A, 2019, 744, 255.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed