Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21120017-6    https://doi.org/10.11896/cldb.21120017
  金属与金属基复合材料 |
液相网络及相对密度对SiCp/2024复合材料显微组织与力学性能的影响
李小龙, 王坦, 左孝青*, 代彪, 周芸
昆明理工大学材料科学与工程学院,昆明 650093
Effects of Liquid Network and Relative Density on Microstructure and Mechanical Properties of SiCp/2024 Composites
LI Xiaolong, WANG Tan, ZUO Xiaoqing*, DAI Biao, ZHOU Yun
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 9525KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为获得高力学性能的SiCp/2024复合材料,本工作采用粉末冶金法制备了37%(体积分数)SiCp/2024复合材料,研究了热压温度及二次热压对复合材料组织及力学性能的影响。结果表明:热压温度为530 ℃时,复合材料具有适中的液相含量(3.28%,体积分数)及相对密度(99.21%),T6热处理态复合材料的力学性能达到了较高水平,抗拉强度和延伸率分别为480 MPa和0.216%;在此基础上,采用540 ℃二次热压进一步细化与分散了复合材料中的液相网络,其相对密度从一次热压的99.30%提高到了99.45%,二次热压T6热处理态复合材料的力学性能达到了最高水平,抗拉强度和延伸率分别为540 MPa和0.515%。分析表明,复合材料中适中、细小分散的液相网络及较高的相对密度是获得具有良好力学性能的SiCp/2024复合材料的关键。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李小龙
王坦
左孝青
代彪
周芸
关键词:  SiCp/2024复合材料  粉末热压  液相网络  相对密度  力学性能    
Abstract: In order to obtain SiCp/2024 composites with high mechanical properties, 37vol% SiCp/2024 composites were prepared by powder metallurgy method in this work. The effects of hot pressing temperature and secondary hot pressing on microstructure and mechanical properties of the composites were studied. The results show that when the hot-pressing temperature is 530 ℃, the composite has a moderate liquid phase (3.28vol%) and relative density (99.21%), and the mechanical properties of T6 heat-treated composites reached a higher level (480 MPa tensile strength and 0.216% elongation). Furthermore, the liquid phase network in the composites was further refined and dispersed by secondary hot pressing at 540 ℃, the relative density increased from 99.30% to 99.45%, the mechanical properties of the T6 composites reached the hig-hest level (540 MPa tensile strength and 0.515% elongation). The results analysis shows that a medium,fine and dispersed liquid phase network and a higher relative density in the composites is the key to the SiCp/2024 composites with good mechanical properties.
Key words:  SiCp/2024 composite    powder hot pressing    liquid phase network    relative density    mechanical property
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TB333  
基金资助: 国家自然科学基金(51861020;51741103)
通讯作者:  *左孝青,昆明理工大学材料科学与工程学院教授,博士研究生导师。1985年华南理工大学金属材料及热处理专业本科毕业,1994年重庆大学金属压力加工专业硕士毕业,2006年昆明理工大学材料学专业博士毕业。主要从事多孔金属材料、金属基复合材料及有色金属材料研究,发表论文112篇,SCI、EI收录50余篇,授权国家发明专利40余项。zxqdzhhm@163.com   
作者简介:  李小龙,2017年6月毕业于聊城大学,获得工学学士学位。现为昆明理工大学材料科学与工程学院硕士研究生,主要从事铝基复合材料研究。
引用本文:    
李小龙, 王坦, 左孝青, 代彪, 周芸. 液相网络及相对密度对SiCp/2024复合材料显微组织与力学性能的影响[J]. 材料导报, 2023, 37(14): 21120017-6.
LI Xiaolong, WANG Tan, ZUO Xiaoqing, DAI Biao, ZHOU Yun. Effects of Liquid Network and Relative Density on Microstructure and Mechanical Properties of SiCp/2024 Composites. Materials Reports, 2023, 37(14): 21120017-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120017  或          http://www.mater-rep.com/CN/Y2023/V37/I14/21120017
1 Kim C S, Cho K, Manjili M H, et al. Journal of Materials Science, 2017, 52(1), 13319.
2 Sachinkumar, Narendranath S, Chakradhar D. Silicon, 2019, 11, 2557.
3 Fathy A, El-Kady O, Mohammed M M M. Transactions of Nonferrous Metals Society of China, 2015, 25(1), 46.
4 Rezaei M R, Shabestari S G, Razavi S H. Journal of Materials Science & Technology, 2017, 33, 1031.
5 Khodabakhshi F, Gerlich A P, Švec P. Materials Science and Enginee-ring:A, 2017, 698, 313.
6 El-Kady O, Fathy A. Materials & Design, 2014, 54, 348.
7 Sreekumar V M, Babu N H, Eskin D G, et al. Materials Science and Engineering:A, 2015, 628, 30.
8 Zhu W B, Zhang Z G, Chen H N, et al. Materials Science Forum, 2020, 984, 119.
9 Cui Y, Wang L F. Chinese Journal of Aeronautics, 2008, 21(06), 578.
10 Ding W, Cheng Y, Chen T, et al. Research and Application of Materials Science, 2020, 2(1), 23.
11 Cui Y, Jin T Z, Cao L G, et al. Journal of Alloys and Compounds, 2016, 681, 233.
12 Wu H D, Zhang H, Chen S, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(3), 692.
13 Dhanasekaran S, Sunilraj S, Ramya G, et al. Transactions of the Indian Institute of Metals, 2016, 69(3), 699.
14 Teng F, Yu K, Luo J, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(10), 2647.
15 Wang T, Yamamoto M, Kagawa A. Materials Transactions, 2015, 56(7), 1081.
16 Pan L W, Lin W J, Tang J F, et al. Materials Reports, 2016, 30(1), 511(in Chinese).
潘利文, 林维捐, 唐景凡, 等. 材料导报, 2016, 30(1), 511.
17 Moses J J, Dinaharan I, Sehkar S J. Transactions of Nonferrous Metals Society of China, 2016, 26(6), 1498.
18 Chen F, Chen Z N, Mao F, et al. Materials Science and Engineering:A, 2015, 625, 357.
19 Zeng J, Peng C Q, Wang R C, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(12), 3255 (in Chinese).
曾婧, 彭超群, 王日初, 等. 中国有色金属学报, 2015, 25(12), 3255.
20 Mao X Z, Hong Y, Zhang Y J, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(12), 473 (in Chinese).
茅学志, 洪雨, 张玉君, 等. 中国有色金属学报, 2017, 27(12), 473.
21 Sun J, Chen G H, Wang B H. Journal of Materials Engineering and Performance, 2019, 28(5), 2697.
22 Yi M D, Xu C H. Rare Metal Materials and Engineering, 2018(S1), 14 (in Chinese).
衣明东, 许崇海. 稀有金属材料与工程, 2018(S1), 14.
23 Qu H X, Zhu S G. Ceramics International, 2013, 39(5), 5415.
24 Ma J, Zhu S G, Ouyang C X. Journal of the European Ceramic Society, 2011, 31(10), 1927.
25 Mi J, Grant P S. Acta Materialia, 2008, 56(7), 1597.
26 Mao W, Zhen Z, Yan S, et al. Journal of Materials Science Technology, 2004, 20(5), 580.
27 Flemings M C. Solidification processing, McGraw-Hill Book Company, US, 1974, pp.161.
28 Liu Y, Luo X, Li Z. Journal of Materials Processing Technology, 2014, 214(2), 165.
29 Zahedi A M, Rezaie H R, Javadpour J, et al. Ceramics International, 2009, 35(5), 1919.
30 Farid A, Guo S J. Transactions of Nonferrous Metals Society of China, 2006, 16(3), 629.
31 Mu D, Zhang Z, Xie Y H, et al. Materials Characterization, 2021, 175, 111090.
32 Liu P, Wang A Q, Xie J P, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(5), 1410.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[10] 刘雄飞, 和西民. 低应变率荷载作用下梯度泡沫铝力学性能研究[J]. 材料导报, 2023, 37(7): 22010266-7.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed