Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22090223-11    https://doi.org/10.11896/cldb.22090223
  无机非金属及其复合材料 |
周期结构电磁超材料吸波体的设计及最新进展
阮心怡1,2, 张恒宇1,2, 王妮1, 肖红2,*
1 东华大学纺织学院,纺织面料技术教育部重点实验室,上海 201620
2 中国人民解放军军事科学院系统工程研究院,北京 100010
Design and Recent Progress of Periodically Structured Electromagnetic Metamaterial Absorbers
RUAN Xinyi1, ZHANG Hengyu1,2, WANG Ni1, XIAO Hong2,*
1 Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
2 Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing 100010, China
下载:  全 文 ( PDF ) ( 17358KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电磁吸波性能始终是军事活动重点关注的研究方向。传统吸波材料不能满足日益增长的综合需求,因此,以人工制备、由亚波长结构单元组合且具有超常物理性质的超材料为基础,经导电单元图案及整体结构设计构成的超材料吸波体,在近些年得到广泛研究和发展。本文综述了周期结构电磁超材料吸波体的发展趋势,凝练其吸波机制,并总结出超材料吸波体的基本结构,包括导电单元层、介质层和反射层。同时参考近年来超材料吸波体的研究成果,以单层结构、多层结构和柔性结构超材料吸波体为对象,详细分析影响超材料吸波体吸波性能的关键因素,归纳总结各类型超材料吸波体的结构设计、材料组分、吸波性能等。此外,针对现有研究成果,探讨周期结构电磁超材料吸波体目前存在的不足之处,指出还需重点关注和研究的问题,以期为后续研究提供方向和思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阮心怡
张恒宇
王妮
肖红
关键词:  超材料吸波体  吸波性能  周期结构  宽频带    
Abstract: Electromagnetic absorbing performance has always been the focus of military activities. Since traditional wave absorbing materials cannot meet the growing comprehensive demand, metamaterial absorbers, which are subwavelength structural units with supernormal physical properties, have been widely studied and developed in recent years by artificially designing conductive units and overall structures. In this paper, the development trend and absorbing mechanism of periodic structure of metamaterial absorbers are reviewed, and the basic structure of metamaterial absorbers is summarized, including conductive element layer, medium layer and reflective layer. At the same time, by referring to the research results of metamaterial absorbers in recent years, the key factors affecting the performance of metamaterial absorbers with single-layer structure, multi-layer structure and flexible structure are analyzed in detail, and the structural design, material composition and wave absorbing properties of each type are summarized. In addition, according to the existing research results, the shortcomings of periodic electromagnetic material wave absorbers are discussed, and the problems that need to be focused on and studied are pointed out, in order to provide the direction and ideas for the follow-up research.
Key words:  metamaterial absorber    wave absorbing property    periodic structure    broadband
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TB34  
基金资助: 国家自然科学基金面上项目(52173191)
通讯作者:  *肖红,博士,军事科学院系统工程研究院军需工程技术研究所高级工程师、博士研究生导师。2005年于东华大学获博士学位,2007年中国科学院化学所博士后,2013年康奈尔大学访问学者。主要从事军用及电磁功能纺织材料、迷彩伪装的基础理论及应用研究。近年来,发表SCI/EI收录论文40余篇,授权专利20余项,撰写“十三五”国家重点图书专著2本。76echo@vip.sina.com   
作者简介:  阮心怡,2019年6月、2022年3月分别于天津工业大学和东华大学获得工学学士学位和硕士学位。现为东华大学纺织学院博士研究生。目前主要研究领域为电磁超材料吸波体设计。
引用本文:    
阮心怡, 张恒宇, 王妮, 肖红. 周期结构电磁超材料吸波体的设计及最新进展[J]. 材料导报, 2024, 38(3): 22090223-11.
RUAN Xinyi, ZHANG Hengyu, WANG Ni, XIAO Hong. Design and Recent Progress of Periodically Structured Electromagnetic Metamaterial Absorbers. Materials Reports, 2024, 38(3): 22090223-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090223  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22090223
1 Liu S H, Liu J M, Dong X L. Electromagnetic shielding and absorbing materials, Chemical Industry Press, China, 2007, pp.260 (in Chinese).
刘顺华, 刘军民, 董星龙. 电磁波屏蔽及吸波材料, 化学工业出版社, 2007, pp.260.
2 Cui W Z, Wang R, Zhang H T, et al. Electromagnetic metamaterials and applications, National Defense Industry Press, China, 2014, pp.12 (in Chinese).
崔万照, 王瑞, 张洪太, 等. 电磁超介质及其应用, 国防工业出版社, 2014, pp.12.
3 Zhang L, Chen X Q, Zheng Y N, et al. Chinese Journal of Radio Science, 2021, 36(6), 817(in Chinese).
张磊, 陈晓晴, 郑熠宁, 等. 电波科学学报, 2021, 36(6), 817.
4 Veselago V G. Soviet Physics Uspekhi, 1968, 10(4), 509.
5 Shelby R A, Smith D R, Schultz S. Science, 2001, 292(5514), 77.
6 Pendry J B, Holden A J, Robbins D J, et al. IEEE Transactions on Microwave Theory and Techniques, 1999, 47, 2075.
7 Landy N I, Sajuyigbe S, Mock J J, et al. Physical Review Letters, 2008, 100(20), 207402.
8 Wen Q Y, Zhang H W, Xie Y S, et al. Applied Physics Letters, 2009, 95(24), 241111.
9 He L H, Xiong C X, Xu H, et al. International Journal of Modern Phy-sics B, 2020, 34(31), 2050298.
10 Deng G S, Lv K, Sun H X, et al. Nanoscale Research Letters, 2020, 15(1), 217.
11 Wu Y J, Lin H, Xiong J, et al. Journal of Applied Physics, 2021, 129(13), 134902.
12 Chang T K, Langley R J, Parker E. IEEE Microwave and Guided Wave Letters, 1993, 3(10), 387.
13 Salta M, Wharton J A, Stoodley P, et al. Philosophical Transactions of the Royal Society A, 2010, 368(1929), 4729.
14 Huang L, Duan Y, Liu J, et al. Composites Science and Technology, 2021, 204, 108640.
15 Cheng C, Fan R, Ren Y, et al. Nanoscale, 2017, 9(18), 5779.
16 Wu H T, Liu S, Wan X, et al. Advanced Science, 2017, 4(9), 1700098.
17 Zhu W R, Zhao X P, Bao S, et al. Chinese Physics Letters, 2010, 27(1), 014204.
18 Sun L K, Cheng H F, Zhou Y J, et al. Optics Express, 2012, 20(4), 4675.
19 Kong X L, Ma H Y, Chen P, et al. Chinese Journal of Radio Science, 2021, 36(6), 947(in Chinese).
孔祥林, 马洪宇, 陈鹏, 等. 电波科学学报, 2021, 36(6), 947.
20 Ding F, Cui Y X, Ge X C, et al. Applied Physics Letters, 2012, 100(10), 103506.
21 Huang L, Chowdhury D R, Ramani S, et al. Applied Physics Letters, 2012, 101(10), 101102.
22 Song J Y, Zhao J, Li Y M, et al. Applied Physics A, 2019, 125(5), 317.
23 Amiri M, Tofigh F, Shariati N, et al. Scientific Reports, 2020, 10(1), 13638.
24 Agarwal M, Meshram M K. Microwave and Optical Technology Letters, 2020, 63(1), 181.
25 Li H, Yuan L H, Zhou B, et al. Journal of Applied Physics, 2011, 110(1), 014909.
26 Khanna Y, Awasthi Y K. Journal of Electronic Materials, 2020, 49(11), 6410.
27 Barde C, Choubey A, Sinha R, et al. Journal of Materials Science:Materials in Electronics, 2020, 31(19), 16898.
28 Thummaluru S R, Chejarla S, Chaudhary R K. Materials Research Express, 2019, 6(5), 055804.
29 Mohanty A, Acharya O P, Appasani B, et al. Plasmonics, 2020, 15(6), 2147.
30 Parsamyan H. Applied Optics, 2020, 59(25), 7504.
31 Li W, Guler U, Kinsey N, et al. Advanced Materials, 2014, 26(47), 7959.
32 Yudistira H T, Kananda K. Journal of Electronic Materials, 2021, 50(1), 389.
33 Sun M J, Liu G H, Zhang S Y, et al. Materials Reports, 2019, 33(Z2), 613(in Chinese).
孙明娟, 刘光烜, 张淑媛, 等. 材料导报, 2019, 33(Z2), 613.
34 Lim D D, Park J, Lee J, et al. Additive Manufacturing, 2022, 55, 102856.
35 Al-Badri K S L. In:3rd International Conference on Materials Engineering and Science (IConMEAS). Electr Network, 2020, pp.2835.
36 Zhu B, Wang Z B, Yu Z Z, et al. Chinese Physics Letters, 2009, 26(11), 114102.
37 Nie Y, Cheng Y Z, Gong R Z. Chinese Physics B, 2013, 22(4), 044102.
38 Fu P, Liu F, Ren G J, et al. Optics Communications, 2018, 417, 62.
39 Yu Y J, Sun P Y, Wang Y F, et al. Journal of Physics D-Applied Phy-sics, 2021, 54(29), 295003.
40 Wu Z H, Zhao J M, Chen K, et al. IEEE Access, 2022, 10, 25290.
41 Singh G, Bhardwaj A, Srivastava K V, et al. Applied Physics A-materials Science & Processing, 2021, 127(11), 858.
42 Liu N, Giessen H. Angewandte Chemie International Edition in English, 2010, 49(51), 9838.
43 Chen Q, Bie S W, Yuan W, et al. Journal of Physics D-Applied Physics, 2016, 49(42), 425102.
44 Zhang H B, Deng L W, Zhou P H, et al. Journal of Applied Physics, 2013, 113(1), 013903.
45 Liu C B. Metamaterials design based on classic concepts in materials science. Ph. D. Thesis, University of Science and Technology Beijing, China, 2017 (in Chinese).
刘传宝. 基于材料学经典概念的超材料设计. 博士学位论文, 北京科技大学, 2017.
46 Chen X D, Grzegorczyk T M, Wu B I, et al. Physical Review E, 2004, 70(1), 016608.
47 Smith D R, Vier D C, Koschny T, et al. Physical Review E, 2005, 71(3), 036617.
48 Costa F, Monorchio A, Manara G. IEEE Antennas and Propagation Ma-gazine, 2012, 54(4), 35.
49 Chen H T. Optics Express, 2012, 20(7), 7165.
50 Chen H T, Zhou J F, O'Hara J F, et al. Physical Review Letters, 2010, 105(7), 073901.
51 Cheng Y Z, Luo H, Chen F. Journal of Applied Physics, 2020, 127(21), 214902.
52 El Assal A, Breiss H, Benzerga R, et al. Micromachines, 2020, 11(10), 930.
53 Li L, Yang Y, Liang C H. Journal of Applied Physics, 2011, 110(6), 063702.
54 Wang Y Y, Chen Z Q, Xu D Y, et al. Results in Physics, 2020, 16, 102951.
55 De Araujo J B O, Siqueira G L, Kemptner E, et al. IEEE Transactions on Antennas and Propagation, 2020, 68(5), 3739.
56 Haridas A, Jaseena N J, Babu M, et al. In:2022 IEEE Delhi Section Confe-rence (DELCON). New Delhi, 2022, pp.1.
57 Wu Z D, Xu B J, Yan M Y, et al. Plasmonics, 2020, 15(6), 1863.
58 Liu S H, Liu J M, Dong X L, et al. Electromagnetic wave shielding and wave absorbing materials, Chemical Industry Press, China, 2020, pp.16 (in Chinese).
刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料, 化学工业出版社, 2020, pp.16.
59 Xu Y Q, Zhou P H, Zhang H B, et al. Journal of Applied Physics, 2011, 110(4), 044102.
60 Wang B N, Koschny T, Soukoulis C M. Physical Review B, 2009, 80(3), 033108.
61 Massiot I, Vandamme N, Bardou N, et al. ACS Photonics, 2014, 1(9), 878.
62 Su X, Feng C, Zeng Y, et al. Optics Communications, 2020, 459, 124885.
63 Zhang H Y, Chen J Y, Wang Y, et al. Textile Research Journal, 2021, 91(15-16), 1752.
64 Ito T, Okazaki S. Nature, 2000, 406(6799), 1027.
65 Zhang X W, Liu S B, Yu Q M, et al. International Journal of Rf and Microwave Computer-aided Engineering, 2021, 31(5), e22601.
66 Wang L S, Xia D Y, Fu Q H, et al. Journal of Computational Electro-nics, 2021, 20(1), 107.
67 Zhou P H, Wang L Y, Zhang G R, et al. IEEE Transactions on Antennas and Propagation, 2019, 67(1), 291.
68 Wang L S, Xia D Y, Chen L X. Journal of University of Jinan (Science and Technology), 2020, 34(4), 402(in Chinese).
王连胜, 夏冬艳, 陈龙溪, 等. 济南大学学报(自然科学版), 2020, 34(4), 402.
69 Xiao H D, Qu Z P, Lv M Y, et al. Journal of Applied Physics, 2019, 126(13), 135107.
70 Yang Y, Song Y L, Fan S C. Journal of Microwaves, 2018, 34(6), 17(in Chinese).
杨一, 宋耀良, 范事成. 微波学报, 2018, 34(6), 17.
71 Lv Z L, Li Z L, Han Y, et al. Symmetry-Basel, 2022, 14(6), 1148.
72 Qu Z, Hao J X, Jing H H, et al. Advanced Composites and Hybrid Materials, DOI:10. 1007/s42114-022-00429-y.
73 Gao H T, Wang J J, Li Z. Journal of Materials Engineering, 2019, 47(1), 70(in Chinese).
高海涛, 王建江, 李泽. 材料工程, 2019, 47(1), 70.
74 Li Z, Zhao F, Wang J J. Rare Metal Materials and Engineering, 2019, 48(11), 3628(in Chinese).
李泽, 赵芳, 王建江, 等. 稀有金属材料与工程, 2019, 48(11), 3628.
75 Zhang C, Yin S, Long C, et al. Optics Express, 2021, 29(9), 14078.
76 Ning J, Chen K, Zhao W, et al. Nanomaterials, 2022, 12(13), 2135.
77 Feng K S, Li N, Li T. Acta Physica Sinica, 2022, 71(3), 113(in Chinese).
冯奎胜, 李娜, 李桐. 物理学报, 2022, 71(3), 113.
78 Du Z Q, Liang J G, Cai T, et al. Optics Express, 2022, 30(2), 914.
79 Liu S S, Ding F, Wu J, et al. Physica Scripta, 2022, 97(4), 045502.
80 Yu J A, Peng S R, Liu L G, et al. Journal of National University of Defense Technology, 2019, 41(3), 153(in Chinese).
于家傲, 彭世蕤, 刘立国, 等. 国防科技大学学报, 2019, 41(3), 153.
81 Kundu D, Mohan A, Chakrabarty A. Ieee Antennas and Wireless Propagation Letters, 2016, 15, 1589.
82 Kumar A, Reddy G S, Padhi J, et al. International Journal of Rf and Microwave Computer-aided Engineering, 2022, 32(7), e23163.
83 Gong Q X, Liu X M, Duan Z Y. Infrared and Laser Engineering, 2013, 42(6), 1528(in Chinese).
弓巧侠, 刘晓旻, 段智勇, 等. 红外与激光工程, 2013, 42(6), 1528.
84 Gu C, Qu S B, Pei Z B, et al. Chinese Physics B, 2011, 20(3), 037801.
85 Zhan S B, Liu T, Ni S C. Ordnance Material Science and Engineering 2013, 36(1), 78(in Chinese).
占生宝, 刘涛, 倪受春, 等. 兵器材料科学与工程, 2013, 36(1), 78.
86 Wang W J, Wang A X, Liang J G, et al. Journal of Physics D-Applied Physics, 2022, 55(32), 325302.
87 Fang B, Wang W, Hu F, et al. In:2021 IEEE International Workshop on Electromagnetics:Applications and Student Innovation Competition (iWEM). Guangzhou, 2021, pp.1.
88 Zhang Z L, Zhang L, Chen X Q, et al. Journal of Magnetism and Magnetic Materials, 2020, 497, 166075.
89 Cheng Z H, Duan B F, Chen Y P, et al. Journal of Magnetic Materials and Devices, 2022, 53(4), 41(in Chinese).
程宗辉, 段本方, 陈云鹏, 等. 磁性材料及器件, 2022, 53(4), 41.
90 Hui Y C, Wang C Q, Huang X Z. Acta Physica Sinica, 2015, 64(21), 434(in Chinese).
惠忆聪, 王春齐, 黄小忠. 物理学报, 2015, 64(21), 434.
91 Momeni-Nasab M, Bidoki S M, Hadizadeh M, et al. AEU-International Journal of Electronics and Communications, 2020, 123, 153259.
92 Bait-Suwailam M M, Almoneef T S, Alomainy A, et al. In:USNC-URSI Radio Science Meeting/IEEE International Symposium on Antennas and Propagation (AP-S). Atlanta, 2019, pp.1623.
93 Singh G, Sheokand H, Chaudhary K, et al. Journal of Physics D-Applied Physics, 2019, 52(38), 385304.
94 Jing H H, Duan J P, Wei Y Q, et al. Materials Research Express, 2022, 9(2), 025802.
95 Feng S M. Physical Review Letters, 2012, 108(19), 193904.
96 Zhong S M, He S L. Scientific Reports, 2013, 3, 2083.
97 Badsha M A, Jun Y C, Hwangbo C K. Optics Communications, 2014, 332, 206.
98 Yoon J, Zhou M, Badsha M A, et al. Scientific Reports, 2015, 5, 12788.
99 Peng H X, Zhou J, Cui T J. Metamaterial, China Railway Publishing House, China, 2021, pp.227 (in Chinese).
彭华新, 周济, 崔铁军. 超材料, 中国铁道出版社, 2021, pp.227.
100 Han Y J, Zhu W B. Advanced Materials Industry, 2014(9), 2(in Chinese).
韩雅娟, 褚文博. 新材料产业, 2014(9), 2.
101 Song B, Zhang L, Wang X B. Aeronautical Manufacturing Technology, 2022, 65(14), 22(in Chinese).
宋波, 张磊, 王晓波, 等. 航空制造技术, 2022, 65(14), 22.
[1] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[2] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[3] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[4] 何恩义, 殷诗浩, 叶永盛, 丁迪, 胡正浪, 吴海华. 微乳液法制备石墨烯-羰基铁粉复合微球及其吸波性能[J]. 材料导报, 2023, 37(17): 22010129-8.
[5] 陈孟州, 刘顾, 汪刘应, 葛超群, 许可俊, 王伟超, 王龙. 超材料吸波体及其3D打印制造研究进展[J]. 材料导报, 2023, 37(16): 21100117-7.
[6] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[7] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[8] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[9] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[10] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[11] 孙磊, 孙俊, 高晓梅, 杨彪, 张晶, 周瑶. 基于超材料的微波宽带完美吸波体设计[J]. 材料导报, 2021, 35(12): 12014-12019.
[12] 朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
[13] 孔静, 高鸿, 李岩, 王向轲, 张静静, 何端鹏, 吴冰, 邢焰. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063.
[14] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
[15] 赵鹏飞, 耿浩然, 范浩军, 许伟建, 廖禄生, 彭政. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed