Design and Recent Progress of Periodically Structured Electromagnetic Metamaterial Absorbers
RUAN Xinyi1, ZHANG Hengyu1,2, WANG Ni1, XIAO Hong2,*
1 Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China 2 Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Beijing 100010, China
Abstract: Electromagnetic absorbing performance has always been the focus of military activities. Since traditional wave absorbing materials cannot meet the growing comprehensive demand, metamaterial absorbers, which are subwavelength structural units with supernormal physical properties, have been widely studied and developed in recent years by artificially designing conductive units and overall structures. In this paper, the development trend and absorbing mechanism of periodic structure of metamaterial absorbers are reviewed, and the basic structure of metamaterial absorbers is summarized, including conductive element layer, medium layer and reflective layer. At the same time, by referring to the research results of metamaterial absorbers in recent years, the key factors affecting the performance of metamaterial absorbers with single-layer structure, multi-layer structure and flexible structure are analyzed in detail, and the structural design, material composition and wave absorbing properties of each type are summarized. In addition, according to the existing research results, the shortcomings of periodic electromagnetic material wave absorbers are discussed, and the problems that need to be focused on and studied are pointed out, in order to provide the direction and ideas for the follow-up research.
1 Liu S H, Liu J M, Dong X L. Electromagnetic shielding and absorbing materials, Chemical Industry Press, China, 2007, pp.260 (in Chinese). 刘顺华, 刘军民, 董星龙. 电磁波屏蔽及吸波材料, 化学工业出版社, 2007, pp.260. 2 Cui W Z, Wang R, Zhang H T, et al. Electromagnetic metamaterials and applications, National Defense Industry Press, China, 2014, pp.12 (in Chinese). 崔万照, 王瑞, 张洪太, 等. 电磁超介质及其应用, 国防工业出版社, 2014, pp.12. 3 Zhang L, Chen X Q, Zheng Y N, et al. Chinese Journal of Radio Science, 2021, 36(6), 817(in Chinese). 张磊, 陈晓晴, 郑熠宁, 等. 电波科学学报, 2021, 36(6), 817. 4 Veselago V G. Soviet Physics Uspekhi, 1968, 10(4), 509. 5 Shelby R A, Smith D R, Schultz S. Science, 2001, 292(5514), 77. 6 Pendry J B, Holden A J, Robbins D J, et al. IEEE Transactions on Microwave Theory and Techniques, 1999, 47, 2075. 7 Landy N I, Sajuyigbe S, Mock J J, et al. Physical Review Letters, 2008, 100(20), 207402. 8 Wen Q Y, Zhang H W, Xie Y S, et al. Applied Physics Letters, 2009, 95(24), 241111. 9 He L H, Xiong C X, Xu H, et al. International Journal of Modern Phy-sics B, 2020, 34(31), 2050298. 10 Deng G S, Lv K, Sun H X, et al. Nanoscale Research Letters, 2020, 15(1), 217. 11 Wu Y J, Lin H, Xiong J, et al. Journal of Applied Physics, 2021, 129(13), 134902. 12 Chang T K, Langley R J, Parker E. IEEE Microwave and Guided Wave Letters, 1993, 3(10), 387. 13 Salta M, Wharton J A, Stoodley P, et al. Philosophical Transactions of the Royal Society A, 2010, 368(1929), 4729. 14 Huang L, Duan Y, Liu J, et al. Composites Science and Technology, 2021, 204, 108640. 15 Cheng C, Fan R, Ren Y, et al. Nanoscale, 2017, 9(18), 5779. 16 Wu H T, Liu S, Wan X, et al. Advanced Science, 2017, 4(9), 1700098. 17 Zhu W R, Zhao X P, Bao S, et al. Chinese Physics Letters, 2010, 27(1), 014204. 18 Sun L K, Cheng H F, Zhou Y J, et al. Optics Express, 2012, 20(4), 4675. 19 Kong X L, Ma H Y, Chen P, et al. Chinese Journal of Radio Science, 2021, 36(6), 947(in Chinese). 孔祥林, 马洪宇, 陈鹏, 等. 电波科学学报, 2021, 36(6), 947. 20 Ding F, Cui Y X, Ge X C, et al. Applied Physics Letters, 2012, 100(10), 103506. 21 Huang L, Chowdhury D R, Ramani S, et al. Applied Physics Letters, 2012, 101(10), 101102. 22 Song J Y, Zhao J, Li Y M, et al. Applied Physics A, 2019, 125(5), 317. 23 Amiri M, Tofigh F, Shariati N, et al. Scientific Reports, 2020, 10(1), 13638. 24 Agarwal M, Meshram M K. Microwave and Optical Technology Letters, 2020, 63(1), 181. 25 Li H, Yuan L H, Zhou B, et al. Journal of Applied Physics, 2011, 110(1), 014909. 26 Khanna Y, Awasthi Y K. Journal of Electronic Materials, 2020, 49(11), 6410. 27 Barde C, Choubey A, Sinha R, et al. Journal of Materials Science:Materials in Electronics, 2020, 31(19), 16898. 28 Thummaluru S R, Chejarla S, Chaudhary R K. Materials Research Express, 2019, 6(5), 055804. 29 Mohanty A, Acharya O P, Appasani B, et al. Plasmonics, 2020, 15(6), 2147. 30 Parsamyan H. Applied Optics, 2020, 59(25), 7504. 31 Li W, Guler U, Kinsey N, et al. Advanced Materials, 2014, 26(47), 7959. 32 Yudistira H T, Kananda K. Journal of Electronic Materials, 2021, 50(1), 389. 33 Sun M J, Liu G H, Zhang S Y, et al. Materials Reports, 2019, 33(Z2), 613(in Chinese). 孙明娟, 刘光烜, 张淑媛, 等. 材料导报, 2019, 33(Z2), 613. 34 Lim D D, Park J, Lee J, et al. Additive Manufacturing, 2022, 55, 102856. 35 Al-Badri K S L. In:3rd International Conference on Materials Engineering and Science (IConMEAS). Electr Network, 2020, pp.2835. 36 Zhu B, Wang Z B, Yu Z Z, et al. Chinese Physics Letters, 2009, 26(11), 114102. 37 Nie Y, Cheng Y Z, Gong R Z. Chinese Physics B, 2013, 22(4), 044102. 38 Fu P, Liu F, Ren G J, et al. Optics Communications, 2018, 417, 62. 39 Yu Y J, Sun P Y, Wang Y F, et al. Journal of Physics D-Applied Phy-sics, 2021, 54(29), 295003. 40 Wu Z H, Zhao J M, Chen K, et al. IEEE Access, 2022, 10, 25290. 41 Singh G, Bhardwaj A, Srivastava K V, et al. Applied Physics A-materials Science & Processing, 2021, 127(11), 858. 42 Liu N, Giessen H. Angewandte Chemie International Edition in English, 2010, 49(51), 9838. 43 Chen Q, Bie S W, Yuan W, et al. Journal of Physics D-Applied Physics, 2016, 49(42), 425102. 44 Zhang H B, Deng L W, Zhou P H, et al. Journal of Applied Physics, 2013, 113(1), 013903. 45 Liu C B. Metamaterials design based on classic concepts in materials science. Ph. D. Thesis, University of Science and Technology Beijing, China, 2017 (in Chinese). 刘传宝. 基于材料学经典概念的超材料设计. 博士学位论文, 北京科技大学, 2017. 46 Chen X D, Grzegorczyk T M, Wu B I, et al. Physical Review E, 2004, 70(1), 016608. 47 Smith D R, Vier D C, Koschny T, et al. Physical Review E, 2005, 71(3), 036617. 48 Costa F, Monorchio A, Manara G. IEEE Antennas and Propagation Ma-gazine, 2012, 54(4), 35. 49 Chen H T. Optics Express, 2012, 20(7), 7165. 50 Chen H T, Zhou J F, O'Hara J F, et al. Physical Review Letters, 2010, 105(7), 073901. 51 Cheng Y Z, Luo H, Chen F. Journal of Applied Physics, 2020, 127(21), 214902. 52 El Assal A, Breiss H, Benzerga R, et al. Micromachines, 2020, 11(10), 930. 53 Li L, Yang Y, Liang C H. Journal of Applied Physics, 2011, 110(6), 063702. 54 Wang Y Y, Chen Z Q, Xu D Y, et al. Results in Physics, 2020, 16, 102951. 55 De Araujo J B O, Siqueira G L, Kemptner E, et al. IEEE Transactions on Antennas and Propagation, 2020, 68(5), 3739. 56 Haridas A, Jaseena N J, Babu M, et al. In:2022 IEEE Delhi Section Confe-rence (DELCON). New Delhi, 2022, pp.1. 57 Wu Z D, Xu B J, Yan M Y, et al. Plasmonics, 2020, 15(6), 1863. 58 Liu S H, Liu J M, Dong X L, et al. Electromagnetic wave shielding and wave absorbing materials, Chemical Industry Press, China, 2020, pp.16 (in Chinese). 刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料, 化学工业出版社, 2020, pp.16. 59 Xu Y Q, Zhou P H, Zhang H B, et al. Journal of Applied Physics, 2011, 110(4), 044102. 60 Wang B N, Koschny T, Soukoulis C M. Physical Review B, 2009, 80(3), 033108. 61 Massiot I, Vandamme N, Bardou N, et al. ACS Photonics, 2014, 1(9), 878. 62 Su X, Feng C, Zeng Y, et al. Optics Communications, 2020, 459, 124885. 63 Zhang H Y, Chen J Y, Wang Y, et al. Textile Research Journal, 2021, 91(15-16), 1752. 64 Ito T, Okazaki S. Nature, 2000, 406(6799), 1027. 65 Zhang X W, Liu S B, Yu Q M, et al. International Journal of Rf and Microwave Computer-aided Engineering, 2021, 31(5), e22601. 66 Wang L S, Xia D Y, Fu Q H, et al. Journal of Computational Electro-nics, 2021, 20(1), 107. 67 Zhou P H, Wang L Y, Zhang G R, et al. IEEE Transactions on Antennas and Propagation, 2019, 67(1), 291. 68 Wang L S, Xia D Y, Chen L X. Journal of University of Jinan (Science and Technology), 2020, 34(4), 402(in Chinese). 王连胜, 夏冬艳, 陈龙溪, 等. 济南大学学报(自然科学版), 2020, 34(4), 402. 69 Xiao H D, Qu Z P, Lv M Y, et al. Journal of Applied Physics, 2019, 126(13), 135107. 70 Yang Y, Song Y L, Fan S C. Journal of Microwaves, 2018, 34(6), 17(in Chinese). 杨一, 宋耀良, 范事成. 微波学报, 2018, 34(6), 17. 71 Lv Z L, Li Z L, Han Y, et al. Symmetry-Basel, 2022, 14(6), 1148. 72 Qu Z, Hao J X, Jing H H, et al. Advanced Composites and Hybrid Materials, DOI:10. 1007/s42114-022-00429-y. 73 Gao H T, Wang J J, Li Z. Journal of Materials Engineering, 2019, 47(1), 70(in Chinese). 高海涛, 王建江, 李泽. 材料工程, 2019, 47(1), 70. 74 Li Z, Zhao F, Wang J J. Rare Metal Materials and Engineering, 2019, 48(11), 3628(in Chinese). 李泽, 赵芳, 王建江, 等. 稀有金属材料与工程, 2019, 48(11), 3628. 75 Zhang C, Yin S, Long C, et al. Optics Express, 2021, 29(9), 14078. 76 Ning J, Chen K, Zhao W, et al. Nanomaterials, 2022, 12(13), 2135. 77 Feng K S, Li N, Li T. Acta Physica Sinica, 2022, 71(3), 113(in Chinese). 冯奎胜, 李娜, 李桐. 物理学报, 2022, 71(3), 113. 78 Du Z Q, Liang J G, Cai T, et al. Optics Express, 2022, 30(2), 914. 79 Liu S S, Ding F, Wu J, et al. Physica Scripta, 2022, 97(4), 045502. 80 Yu J A, Peng S R, Liu L G, et al. Journal of National University of Defense Technology, 2019, 41(3), 153(in Chinese). 于家傲, 彭世蕤, 刘立国, 等. 国防科技大学学报, 2019, 41(3), 153. 81 Kundu D, Mohan A, Chakrabarty A. Ieee Antennas and Wireless Propagation Letters, 2016, 15, 1589. 82 Kumar A, Reddy G S, Padhi J, et al. International Journal of Rf and Microwave Computer-aided Engineering, 2022, 32(7), e23163. 83 Gong Q X, Liu X M, Duan Z Y. Infrared and Laser Engineering, 2013, 42(6), 1528(in Chinese). 弓巧侠, 刘晓旻, 段智勇, 等. 红外与激光工程, 2013, 42(6), 1528. 84 Gu C, Qu S B, Pei Z B, et al. Chinese Physics B, 2011, 20(3), 037801. 85 Zhan S B, Liu T, Ni S C. Ordnance Material Science and Engineering 2013, 36(1), 78(in Chinese). 占生宝, 刘涛, 倪受春, 等. 兵器材料科学与工程, 2013, 36(1), 78. 86 Wang W J, Wang A X, Liang J G, et al. Journal of Physics D-Applied Physics, 2022, 55(32), 325302. 87 Fang B, Wang W, Hu F, et al. In:2021 IEEE International Workshop on Electromagnetics:Applications and Student Innovation Competition (iWEM). Guangzhou, 2021, pp.1. 88 Zhang Z L, Zhang L, Chen X Q, et al. Journal of Magnetism and Magnetic Materials, 2020, 497, 166075. 89 Cheng Z H, Duan B F, Chen Y P, et al. Journal of Magnetic Materials and Devices, 2022, 53(4), 41(in Chinese). 程宗辉, 段本方, 陈云鹏, 等. 磁性材料及器件, 2022, 53(4), 41. 90 Hui Y C, Wang C Q, Huang X Z. Acta Physica Sinica, 2015, 64(21), 434(in Chinese). 惠忆聪, 王春齐, 黄小忠. 物理学报, 2015, 64(21), 434. 91 Momeni-Nasab M, Bidoki S M, Hadizadeh M, et al. AEU-International Journal of Electronics and Communications, 2020, 123, 153259. 92 Bait-Suwailam M M, Almoneef T S, Alomainy A, et al. In:USNC-URSI Radio Science Meeting/IEEE International Symposium on Antennas and Propagation (AP-S). Atlanta, 2019, pp.1623. 93 Singh G, Sheokand H, Chaudhary K, et al. Journal of Physics D-Applied Physics, 2019, 52(38), 385304. 94 Jing H H, Duan J P, Wei Y Q, et al. Materials Research Express, 2022, 9(2), 025802. 95 Feng S M. Physical Review Letters, 2012, 108(19), 193904. 96 Zhong S M, He S L. Scientific Reports, 2013, 3, 2083. 97 Badsha M A, Jun Y C, Hwangbo C K. Optics Communications, 2014, 332, 206. 98 Yoon J, Zhou M, Badsha M A, et al. Scientific Reports, 2015, 5, 12788. 99 Peng H X, Zhou J, Cui T J. Metamaterial, China Railway Publishing House, China, 2021, pp.227 (in Chinese). 彭华新, 周济, 崔铁军. 超材料, 中国铁道出版社, 2021, pp.227. 100 Han Y J, Zhu W B. Advanced Materials Industry, 2014(9), 2(in Chinese). 韩雅娟, 褚文博. 新材料产业, 2014(9), 2. 101 Song B, Zhang L, Wang X B. Aeronautical Manufacturing Technology, 2022, 65(14), 22(in Chinese). 宋波, 张磊, 王晓波, 等. 航空制造技术, 2022, 65(14), 22.