Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21020115-6    https://doi.org/10.11896/cldb.21020115
  无机非金属及其复合材料 |
基于PPR数据建模技术的砂砾石料应力应变规律拟合
杨海华1,2,*, 杨武1,2, 刘汉龙1, 马俊玲1, 王景1
1 新疆农业大学水利与土木工程学院,乌鲁木齐 830052
2 新疆水利工程安全与水灾害防治重点实验室,乌鲁木齐 830052
Fitting of Stress and Strain Law of Sand and Gravel Based on PPR Data Modeling Technology
YANG Haihua1,2,*, YANG Wu1,2, LIU Hanlong1, MA Junling1, WANG Jing1
1 College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China
2 Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
下载:  全 文 ( PDF ) ( 2463KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 土的本构关系是岩土工程界备受关注的重要理论之一,其应力应变关系的准确描述是本构模型的关键问题。本工作基于大型静三轴试验,研究了两种不同级配砂砾石料的应力应变关系,采用PPR无假定数据建模技术对试验结果进行了建模拟合,并与邓肯-张E-B双曲线模型进行对比分析。结果表明:PPR数据建模技术能够较好地拟合砂砾石料在三轴试验下的应力应变关系,计算值与试验值的相对误差小于6%时的合格率达到90%以上,偏应力与体应变的最大相对误差分别为13.2%和20.9%,相较邓肯-张双曲线模型具有更高的精度;PPR模型能准确描述砂砾石料受剪切过程中的体胀特性,并且对三轴试验结果具有较好的预测功能。本工作提出了一种数据建模方法来表示土体应力应变关系,研究结果为岩土工程材料的应力应变关系描述提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨海华
杨武
刘汉龙
马俊玲
王景
关键词:  砂砾石料  三轴试验  应力应变关系  数据建模技术  投影寻踪回归(PPR)    
Abstract: The constitutive relationship of soil is one of the important theories in geotechnical engineering, and the accurate description of its stress-strain relationship is the key problem of constitutive model. Based on the large-scale static triaxial test, this work studied the stress-strain relationship of two different graded gravel materials, used PPR non-hypothetical data modeling technology to model and fit the test results, and compared it with Duncan-Chang E-B hyperbolic model. The results show that PPR data modeling technology can better fit the stress-strain relationship of sand gravel under triaxial test. When the relative error between the calculated value and the test value is less than 6%, the qualified rate is more than 90%, and the maximum relative errors of deviatoric stress and volumetric strain are 13.2% and 20.9% respectively, which has higher accuracy than Duncan Chang hyperbolic model; PPR model can accurately describe the swelling characteristics of sand gravel in the process of shear, and has a good prediction function for the results of triaxial test. In this work, a data modeling method was proposed to represent the stress-strain relationship of soil. The research results provide a new idea for the description of the stress-strain relationship of geotechnical engineering materials.
Key words:  sand and gravel material    triaxial test    stress-strain relationship    data modeling technology    projection pursuit regression(PPR)
出版日期:  2023-07-10      发布日期:  2023-07-10
ZTFLH:  TU41  
  TU43  
基金资助: 新疆维吾尔自治区自然科学基金项目(2021D01A100);水沙科学与水利水电工程国家重点实验室科研课题项目(2018-KY-04)
通讯作者:  *杨海华,新疆农业大学水利与土木工程学院高级实验师、硕士研究生导师。2022年6月毕业于新疆农业大学水利工程专业,获得博士学位。于2014年9月至今在新疆农业大学水利与土木工程学院任教,主要从事水利水电工程、土木工程专业教学及岩土工程材料的动、静力特性方面的研究。主持及参与科研项目12项,发表学术论文26篇,获得专利11项,参与撰写专著4部,获得软件著作权3项。316741706@qq.com   
引用本文:    
杨海华, 杨武, 刘汉龙, 马俊玲, 王景. 基于PPR数据建模技术的砂砾石料应力应变规律拟合[J]. 材料导报, 2023, 37(13): 21020115-6.
YANG Haihua, YANG Wu, LIU Hanlong, MA Junling, WANG Jing. Fitting of Stress and Strain Law of Sand and Gravel Based on PPR Data Modeling Technology. Materials Reports, 2023, 37(13): 21020115-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020115  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21020115
1 Li G X. Advanced soil mechanics, Tsinghua University Press, China, 2004, pp.34 (in Chinese).
李广信. 高等土力学, 清华大学出版社, 2004, pp.34.
2 Gong X N. Rock and Soil Mechanics, 2011, 32(2), 321(in Chinese).
龚晓南. 岩土力学, 2011, 32(2), 321.
3 Chen Y M, Ma P C, Tang Y. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4), 901 (in Chinese).
陈云敏, 马鹏程, 唐耀. 力学学报, 2020, 52(4), 901.
4 Zhang G, Wang G, Yin Z Y, et al. China Civil Engineering Journal, 2020, 53(2), 105 (in Chinese).
张嘎, 王刚, 尹振宇, 等. 土木工程学报, 2020, 53(2), 105.
5 Shen Z J. Chinese Journal of Geotechnical Engineering, 1993(3), 21 (in Chinese).
沈珠江. 岩土工程学报, 1993(3), 21.
6 Huang W X. Engineering properties of soil, China Water & Power Press, China, 1983, pp.24 (in Chinese).
黄文熙. 土的工程性质 , 中国水利电力出版社, 1983, pp.24.
7 Shen Z J. Theoretical soil mechanics, China Water & Power Press, China, 2000, pp.9 (in Chinese).
沈珠江. 理论土力学 , 中国水利水电出版社, 2000, pp.9.
8 Li G X. Chinese Journal of Geotechnical Engineering, 2006(1), 1 (in Chinese).
李广信. 岩土工程学报, 2006(1), 1.
9 Wang Y, Wang Q, Zheng Z G. The Chinese Journal of Geological Hazard and Control, 1997(3), 8 (in Chinese).
王园, 王沁, 郑祖国. 中国地质灾害与防治学报, 1997(3), 8.
10 Duncan J M, Chang C Y. Journal of the Soil Mechanics and Foundations Division, 1970, 96, 1629.
11 Druker D C, Gibson R E, Henkel D J. ASCE Transaction, DOI: 10. 1061/TACEAT. 0007430.
12 Yao Y P, Hou W, Zhou A N. Geotechnique, 2009, 59(5), 451.
13 Kachanov L M. Nank S. S. R. Otd Tech Nauk, 1958, 8, 26.
14 Schofield A N, Wroth C P. Critical state soil mechanics, London McGraw-Hill Press, UK, 1968, pp.145.
15 Liu S H, Shao D C, Shen C M, et al. Chinese Journal of Geotechnical Engineering, 2017, 39(5), 777 (in Chinese).
刘斯宏, 邵东琛, 沈超敏, 等. 岩土工程学报, 2017, 39(5), 777.
16 Dong Q P, Yao H L, Lu Z, et al. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2), 4334 (in Chinese).
董启朋, 姚海林, 卢正, 等. 岩石力学与工程学报, 2014, 33(S2), 4334.
17 Du X L, Huang J Q, Jin L, et al. Chinese Journal of Geotechnical Engineering, 2017, 39(6), 978 (in Chinese).
杜修力, 黄景琦, 金浏, 等. 岩土工程学报, 2017, 39(6), 978.
18 Wu M X, Ye F M, Zhang Q. Rock and Soil Mechanics, 2017, 38(6), 1550 (in Chinese).
吴梦喜, 叶发明, 张琦. 岩土力学, 2017, 38(6), 1550.
19 Cai C, Ma W, Zhao S P, et al. Chinese Journal of Geotechnical Enginee-ring, 2017, 39(5), 879 (in Chinese).
蔡聪, 马巍, 赵淑萍, 等. 岩土工程学报, 2017, 39(5), 879.
20 Huang M S, Yao Y P, Yin Z Y, et al. China Civil Engineering Journal, 2016, 49(7), 9 (in Chinese).
黄茂松, 姚仰平, 尹振宇, 等. 土木工程学报, 2016, 49(7), 9.
21 Ren Q Y, Zhu Y W, Wang J T, et al. Rock and Soil Mechanics, 2006(10), 1699 (in Chinese).
任青阳, 朱以文, 王靖涛, 等. 岩土力学, 2006(10), 1699.
22 Zhang G Y, Xu H, Wang J T, et al. Chinese Journal of Solid Mechanics, 2008(1), 85 (in Chinese).
张光永, 徐辉, 王靖涛, 等. 固体力学学报, 2008(1), 85.
23 Ministry of Water Resources, PRC. Geotechnical test methods and stan-dards, China Planning Press, China, 2019, pp.317 (in Chinese).
中华人民共和国水利部. 土工试验方法与标准, 中国计划出版社, 2019, pp.317.
24 Yu J D, Liu S H, Wang T, et al. Chinese Journal of Geotechnical Engineering, 2019, 41(11), 2142 (in Chinese).
于际都, 刘斯宏, 王涛, 等. 岩土工程学报, 2019, 41(11), 2142.
25 Compilation Group of Soil Mechanics Textbook of Hohai University. Soil mechanics, Higher Education Press, China, 2019, pp.154 (in Chinese).
河海大学《土力学》教材编写组. 土力学, 高等教育出版社, 2019, pp.154.
26 Zheng Z G, He J X, Gong J W, et al. Projection pursuit regression for complex systems without assumed modeling techniques and application examples, China Water & Power Press, China, 2019, pp.43 (in Chinese).
郑祖国, 何建新, 宫经伟, 等. 复杂系统的投影寻踪回归无假定建模技术及应用实例, 中国水利水电出版社, 2019, pp.43.
27 Jiang C M, Gong J W, Tang X J, et al. Journal of Building Materials, 2019, 22(3), 333 (in Chinese).
姜春萌, 宫经伟, 唐新军, 等. 建筑材料学报, 2019, 22(3), 333.
[1] 栗培龙, 裴仪, 胡晋川, 胡伟. 电石渣稳定土抗压强度影响因素及预估模型研究[J]. 材料导报, 2021, 35(22): 22092-22097.
[2] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed