Fitting of Stress and Strain Law of Sand and Gravel Based on PPR Data Modeling Technology
YANG Haihua1,2,*, YANG Wu1,2, LIU Hanlong1, MA Junling1, WANG Jing1
1 College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China 2 Xinjiang Key Laboratory of Hydraulic Engineering Security and Water Disasters Prevention, Urumqi 830052, China
Abstract: The constitutive relationship of soil is one of the important theories in geotechnical engineering, and the accurate description of its stress-strain relationship is the key problem of constitutive model. Based on the large-scale static triaxial test, this work studied the stress-strain relationship of two different graded gravel materials, used PPR non-hypothetical data modeling technology to model and fit the test results, and compared it with Duncan-Chang E-B hyperbolic model. The results show that PPR data modeling technology can better fit the stress-strain relationship of sand gravel under triaxial test. When the relative error between the calculated value and the test value is less than 6%, the qualified rate is more than 90%, and the maximum relative errors of deviatoric stress and volumetric strain are 13.2% and 20.9% respectively, which has higher accuracy than Duncan Chang hyperbolic model; PPR model can accurately describe the swelling characteristics of sand gravel in the process of shear, and has a good prediction function for the results of triaxial test. In this work, a data modeling method was proposed to represent the stress-strain relationship of soil. The research results provide a new idea for the description of the stress-strain relationship of geotechnical engineering materials.
杨海华, 杨武, 刘汉龙, 马俊玲, 王景. 基于PPR数据建模技术的砂砾石料应力应变规律拟合[J]. 材料导报, 2023, 37(13): 21020115-6.
YANG Haihua, YANG Wu, LIU Hanlong, MA Junling, WANG Jing. Fitting of Stress and Strain Law of Sand and Gravel Based on PPR Data Modeling Technology. Materials Reports, 2023, 37(13): 21020115-6.
1 Li G X. Advanced soil mechanics, Tsinghua University Press, China, 2004, pp.34 (in Chinese). 李广信. 高等土力学, 清华大学出版社, 2004, pp.34. 2 Gong X N. Rock and Soil Mechanics, 2011, 32(2), 321(in Chinese). 龚晓南. 岩土力学, 2011, 32(2), 321. 3 Chen Y M, Ma P C, Tang Y. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4), 901 (in Chinese). 陈云敏, 马鹏程, 唐耀. 力学学报, 2020, 52(4), 901. 4 Zhang G, Wang G, Yin Z Y, et al. China Civil Engineering Journal, 2020, 53(2), 105 (in Chinese). 张嘎, 王刚, 尹振宇, 等. 土木工程学报, 2020, 53(2), 105. 5 Shen Z J. Chinese Journal of Geotechnical Engineering, 1993(3), 21 (in Chinese). 沈珠江. 岩土工程学报, 1993(3), 21. 6 Huang W X. Engineering properties of soil, China Water & Power Press, China, 1983, pp.24 (in Chinese). 黄文熙. 土的工程性质 , 中国水利电力出版社, 1983, pp.24. 7 Shen Z J. Theoretical soil mechanics, China Water & Power Press, China, 2000, pp.9 (in Chinese). 沈珠江. 理论土力学 , 中国水利水电出版社, 2000, pp.9. 8 Li G X. Chinese Journal of Geotechnical Engineering, 2006(1), 1 (in Chinese). 李广信. 岩土工程学报, 2006(1), 1. 9 Wang Y, Wang Q, Zheng Z G. The Chinese Journal of Geological Hazard and Control, 1997(3), 8 (in Chinese). 王园, 王沁, 郑祖国. 中国地质灾害与防治学报, 1997(3), 8. 10 Duncan J M, Chang C Y. Journal of the Soil Mechanics and Foundations Division, 1970, 96, 1629. 11 Druker D C, Gibson R E, Henkel D J. ASCE Transaction, DOI: 10. 1061/TACEAT. 0007430. 12 Yao Y P, Hou W, Zhou A N. Geotechnique, 2009, 59(5), 451. 13 Kachanov L M. Nank S. S. R. Otd Tech Nauk, 1958, 8, 26. 14 Schofield A N, Wroth C P. Critical state soil mechanics, London McGraw-Hill Press, UK, 1968, pp.145. 15 Liu S H, Shao D C, Shen C M, et al. Chinese Journal of Geotechnical Engineering, 2017, 39(5), 777 (in Chinese). 刘斯宏, 邵东琛, 沈超敏, 等. 岩土工程学报, 2017, 39(5), 777. 16 Dong Q P, Yao H L, Lu Z, et al. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2), 4334 (in Chinese). 董启朋, 姚海林, 卢正, 等. 岩石力学与工程学报, 2014, 33(S2), 4334. 17 Du X L, Huang J Q, Jin L, et al. Chinese Journal of Geotechnical Engineering, 2017, 39(6), 978 (in Chinese). 杜修力, 黄景琦, 金浏, 等. 岩土工程学报, 2017, 39(6), 978. 18 Wu M X, Ye F M, Zhang Q. Rock and Soil Mechanics, 2017, 38(6), 1550 (in Chinese). 吴梦喜, 叶发明, 张琦. 岩土力学, 2017, 38(6), 1550. 19 Cai C, Ma W, Zhao S P, et al. Chinese Journal of Geotechnical Enginee-ring, 2017, 39(5), 879 (in Chinese). 蔡聪, 马巍, 赵淑萍, 等. 岩土工程学报, 2017, 39(5), 879. 20 Huang M S, Yao Y P, Yin Z Y, et al. China Civil Engineering Journal, 2016, 49(7), 9 (in Chinese). 黄茂松, 姚仰平, 尹振宇, 等. 土木工程学报, 2016, 49(7), 9. 21 Ren Q Y, Zhu Y W, Wang J T, et al. Rock and Soil Mechanics, 2006(10), 1699 (in Chinese). 任青阳, 朱以文, 王靖涛, 等. 岩土力学, 2006(10), 1699. 22 Zhang G Y, Xu H, Wang J T, et al. Chinese Journal of Solid Mechanics, 2008(1), 85 (in Chinese). 张光永, 徐辉, 王靖涛, 等. 固体力学学报, 2008(1), 85. 23 Ministry of Water Resources, PRC. Geotechnical test methods and stan-dards, China Planning Press, China, 2019, pp.317 (in Chinese). 中华人民共和国水利部. 土工试验方法与标准, 中国计划出版社, 2019, pp.317. 24 Yu J D, Liu S H, Wang T, et al. Chinese Journal of Geotechnical Engineering, 2019, 41(11), 2142 (in Chinese). 于际都, 刘斯宏, 王涛, 等. 岩土工程学报, 2019, 41(11), 2142. 25 Compilation Group of Soil Mechanics Textbook of Hohai University. Soil mechanics, Higher Education Press, China, 2019, pp.154 (in Chinese). 河海大学《土力学》教材编写组. 土力学, 高等教育出版社, 2019, pp.154. 26 Zheng Z G, He J X, Gong J W, et al. Projection pursuit regression for complex systems without assumed modeling techniques and application examples, China Water & Power Press, China, 2019, pp.43 (in Chinese). 郑祖国, 何建新, 宫经伟, 等. 复杂系统的投影寻踪回归无假定建模技术及应用实例, 中国水利水电出版社, 2019, pp.43. 27 Jiang C M, Gong J W, Tang X J, et al. Journal of Building Materials, 2019, 22(3), 333 (in Chinese). 姜春萌, 宫经伟, 唐新军, 等. 建筑材料学报, 2019, 22(3), 333.