Structure Dependence and Optimization of High Temperature Stress in Zirconia/Alumina Gradient Materials
CHEN Long1, LIANG Xinxing2, LIANG Baoqing2, WANG Yunjie1, WU Yuanting1, LIU Changqing3,*
1 Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Material Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China 2 Zhengzhou Fangming High Temperature Ceramic New Material Company Limited, Zhengzhou 452370, China 3 State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract: Zirconia (ZrO2) materials are widely used in various glass furnaces due to its excellent mechanical properties and corrosion resistance to melt glass. However, because of their poor thermal shock resistance, ZrO2 materials are easy to crack and peel off, which influents the quality of the glass and shortens the service life of the furnace. To provide a material with excellent erosion resistance and thermal shock resistance for glass furnace, composition and structural parameters of the ZrO2-Al2O3 gradient material were optimized based on the analysis of stress field under high temperature by using finite element simulation. The ZrO2-Al2O3 gradient material was prepared using a pressureless sintering process. And the prepared materials show good mechanical properties, thermal shock resistance and erosion resistance. The results show that a high density ZrO2-Al2O3 gradient material without warping deformation can be produced by adopting a symmetrical structural design with high zirconium content layers on both sides and gradient layers in the middle. When the layer number of the ZrO2-Al2O3 gradient material is 5 and the gradient index is 0.9, the maximum equivalent thermal stress and maximum axial stress of the material are relatively small, and the stress gradient is the smallest. The bending strength of the material reaches 668 MPa. And the material possesses good anti-thermal shock properties. In addition, no obvious erosion layer or element diffusion at the surface of the sample can be observed after erosion experiment under 1 500 ℃.
1 Beknazarian D V, Kanevets G E, Strogonov K V. Journal of Physics:Conference Series, 2020, 1683(5), 395. 2 Sun Y K, Jung I H. Ceramics International, 2022, 48(4), 5413. 3 Li M Y, Tunca B S, Van M B, et al. Journal of the European Ceramic Society, 2023, 43(5), 2078. 4 Fu X R, Chen H. Refractories & Lime, 2020, 45(4), 34(in Chinese). 符心蕊, 陈辉. 耐火与石灰, 2020, 45(4), 34. 5 Chen T L. Study on computational heat transfer method for thickness monitoring of refractory erosion zone in glass furnace. Ph. D. Thesis, Yan-shan University, China, 2021(in Chinese). 陈天麟. 玻璃熔窑耐火材料侵蚀区厚度监测的计算传热学方法研究. 博士学位论文, 燕山大学, 2021. 6 Li Q, Yu J Y, Tang J, et al. China Foundry, 2012, 9(4), 337. 7 Zhang Y F, Zhang X F. Jourmal of Hubei Polytechnic University, 2018, 34(3), 35(in Chinese). 张银凤, 张校飞. 湖北理工学院学报, 2018, 34(3), 35. 8 Li K, Wang D L, Chen H, et al. Journal of Advanced Ceramics, 2014, 3(3), 250. 9 Huang C Z, Sun J, Liu H, et al. Powder Metallurgy Technology, 2005, 23(5), 323(in Chinese). 黄传真, 孙静, 刘含, 等. 粉末冶金技术, 2005, 23(5), 323. 10 Fang Y, Zhang Y S, Song J J, et al. Materials and Design, 2013, 49, 421. 11 Chen B, Ding P D, Zhou Z H. Journal of the Chinese Ceramic Society, 2001, 29(4), 386(in Chinese). 陈蓓, 丁培道, 周泽华. 硅酸盐学报, 2001, 29 (4), 386. 12 Zhou Z H. Study on properties of ZrO2-Al2O3 laminated ceramics. Ph. D. Thesis, Chongqing University, China, 2002(in Chinese). 周泽华, 氧化锆-氧化铝层状复合陶瓷的性能研究. 博士学位论文, 重庆大学, 2002. 13 Zhang Y L. Gradient design and application of self-lubricating ceramic tool material. Ph. D. Thesis, Shandong Polytechnic University, China, 2012(in Chinese). 张永莲. 自润滑陶瓷刀具材料的梯度设计及应用. 博士学位论文, 山东轻工业学院, 2012. 14 Wan C, Motohashi Y, Shibata T, et al. Materials Transactions, 2002, 43(10), 2473. 15 Frano R L, Aquaro D, Scaletti L, et al. Journal of Physics:Conference Series, 2015, 655(1), 012057. 16 Pierard O, Friebel C, Doghri I. Composites Science and Technology, 2004, 64(10-11), 1587. 17 Chen K. Finite element research on thermo-elastic behaviors and fracture characteristics of graded composites. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2014(in Chinese). 陈康. 梯度非均匀复合材料热力学响应及断裂特性的有限元研究. 博士学位论文, 南京航天航空大学, 2014. 18 Yuan Q. The analysis of residual stress for functionally graded material. Ph. D. Thesis, Dalian University of Technology, China, 2010(in Chinese). 袁麒. 功能梯度材料的残余应力分析. 博士学位论文, 大连理工大学, 2010. 19 Wang S Y. Design, thermal shock resistance and corrosion resistance to melting metal properties of Y2O3-W graded materials. Ph. D. Thesis, Harbin Engineering University, China, 2018(in Chinese). 王诗阳. Y2O3-W梯度材料的设计及抗热震和抗液态金属侵蚀性能. 博士学位论文, 哈尔滨工程大学, 2018. 20 Zhang G B, Guo Q G, Wang K J, et al. Materials Science and Enginee-ring:A, 2008, 488(1-2), 45. 21 Feng Y J, Du S S, Cheng J G, et al. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(11), 30(in Chinese). 冯忆艰, 杜双松, 程继贵, 等. 农业机械学报, 2008, 39(11), 30. 22 Wei X, Chen W, Chen B. Computers, Materials & Continua, 2015, 48(1), 1. 23 Fang Y, Su Y F, Zhang Y S, et al. Journal of the Chinese Ceramic Society, 2016, 44(12), 1729(in Chinese). 方媛, 苏云峰, 张永胜, 等. 硅酸盐学报, 2016, 44(12), 1729.