Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24030005-7    https://doi.org/10.11896/cldb.24030005
  金属与金属基复合材料 |
多元复合稀土钨电极与钍钨电极的生态设计实践
杨坤1,2,3, 陈文娟2,3,*, 杨建参2,3, 高峰2,3, 龚先政2,3, 刘宇2,3, 孙博学2,3
1 中国汽车工程研究院股份有限公司,重庆 401120
2 北京工业大学材料科学与工程学院,北京 100124
3 工业大数据应用技术国家工程实验室,北京 100124
Eco-design and Practice of Multiplicity Rare Earth Tungsten Electrodes and Thoriated Tungsten Electrodes
YANG Kun1,2,3, CHEN Wenjuan2,3,*, YANG Jiancan2,3, GAO Feng2,3, GONG Xianzheng2,3,LIU Yu2,3, SUN Boxue2,3
1 China Automotive Engineering Research Institute Co., Ltd., Chongqing 401120, China
2 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
3 National Engineering Laboratory for Industrial Big-data Application Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 3385KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钨电极材料作为机械、核电、航空航天等行业不可或缺的功能材料,被应用于钨极氩弧焊、等离子切割等工艺技术中。钨电极市场中稀土钨电极占据近50%的份额,其中以多元复合稀土钨电极为主,另外,具有放射性的钍钨电极仍然占据一定份额。多元复合稀土钨电极虽能够满足焊接行业对电极的性能要求,避免钍钨电极的放射性污染,然而生产过程需要消耗宝贵的稀土战略资源,因此有必要从生态设计的角度出发衡量二者的综合优越性。本工作基于生命周期评价(Life cycle assessment,LCA)思想,从资源-环境-性能三个因素对钨电极材料产品进行生态设计,建立了基于资源-环境-性能多因素综合决策方法模型和基于模糊矩阵理论的钨电极生态设计多指标评价模型。研究结果显示,多元复合稀土钨电极的轧制工艺路线在资源、环境和性能指标上均优于钍钨电极。其环境负荷较钍钨电极旋锻工艺路线降低了约37.84%;在生产阶段的资源耗竭性上,较钍钨电极旋锻工艺路线的资源影响潜值降低了67.40%;对焊接应用需求的满足程度优于钍钨电极,且综合性能指标比钍钨电极高出约35.50%。综合考虑基于不同生态设计方法与设计因素,针对钨极氩弧焊焊接应用领域,多元复合稀土钨电极的生态实施效果优于钍钨电极。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨坤
陈文娟
杨建参
高峰
龚先政
刘宇
孙博学
关键词:  多元复合稀土钨电极  钍钨电极  生态设计  生命周期评价    
Abstract: Tungsten electrode materials are indispensable functional materials in machinery, nuclear power, aerospace and other industries, and are used in processes such as tungsten inert gas welding and plasma cutting. Rare earth tungsten electrodes account for nearly 50% of the tungsten electrode market, in which multiplicity rare earth tungsten electrodes as the main type. In addition, the radioactive thoriated tungsten electrodes still occupy certain share. Although the multiplicity rare earth tungsten electrodes can satisfy the performance requirements of the welding industry and avoid the radioactive pollution of thoriated tungsten electrodes, the production process needs to consume valuable rare earth strategic resources, so it is necessary to measure the comprehensive advantages of the both from the perspective of ecological design. Based on the idea of life cycle assessment (LCA), the eco-design of tungsten electrode material was carried out from three factors of resources, environment and performance. This study established a multi-factor comprehensive decision-making method model based on resources-environment-performance factors and fuzzy matrix theory. The results showed that the rolling process of the multiplicity rare earth tungsten electrodes is superior to the tho-riated tungsten electrodes. Compared to thoriated tungsten electrodes rotary forging process, its environmental load reduced by 37.84%, the resource impact potential reduced by 67.4% during the production phase. The demand of welding application is better than that of thoriated tungsten electrodes, and the comprehensive performance is about 35.50% higher. Considering different eco-design methods and design factors, the ecological implementation effect of multiplicity rare earth tungsten electrodes is superior than that of thoriated tungsten electrodes in the field of tungsten inert gas welding.
Key words:  multiplicity rare earth tungsten electrode    thoriated tungsten electrode    ecological design    life cycle assessment
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TF841  
  TG422  
  X820.3  
基金资助: 国家重点研发计划(2023YFB3811800);国家自然科学基金创新研究群体项目(51621003)
通讯作者:  *陈文娟,博士,北京工业大学材料科学与工程学院讲师,主要从事稀土材料的绿色生产及生命周期评价。chenwenjuan@bjut.edu.cn   
作者简介:  杨坤,现就职于中国汽车工程研究院股份有限公司,主要研究方向为材料生命周期评价与生态设计。
引用本文:    
杨坤, 陈文娟, 杨建参, 高峰, 龚先政, 刘宇, 孙博学. 多元复合稀土钨电极与钍钨电极的生态设计实践[J]. 材料导报, 2025, 39(12): 24030005-7.
YANG Kun, CHEN Wenjuan, YANG Jiancan, GAO Feng, GONG Xianzheng,LIU Yu, SUN Boxue. Eco-design and Practice of Multiplicity Rare Earth Tungsten Electrodes and Thoriated Tungsten Electrodes. Materials Reports, 2025, 39(12): 24030005-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030005  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24030005
1 Wu L, Zhang G J, Gao H M. Materials Science Forum, 2005, 502, 13.
2 Kumar K, Kumar C S, Masanta M, et al. Materials Today:Proceedings, 2022, 50(5), 999.
3 Yang J M. Preparation technology of composite rare earth tungsten electrode. Ph. D. Thessis, Beijing University of Technology, China, 2009 (in Chinese).
杨建参. 多元复合稀土钨电极制备技术. 博士学位论文, 北京工业大学, 2009.
4 Cui Y T, Li B S, Wang L Y. Advanced Materials Industry, 2013, 231(2), 12 (in Chinese).
崔云涛, 李炳山, 王芦燕. 新材料产业, 2013, 231(2), 12.
5 Fargnoli M, Minncis M D, Tronci M. Journal of Engineering & Technology Management, 2014, 34(2), 29.
6 Xiao N. Mechanical Research & Application, 2011, 24(4), 129.
7 Nie Z R, Liu Y, Sun B X, et al. Materials China, 2016, 35(3), 161 (in Chinese).
聂祚仁, 刘宇, 孙博学, 等. 中国材料进展, 2016, 35(3), 161.
8 The State Administration for Market Regulation. Tungsten electrodes for arc welding and plasma welding and cutting, GB/T 31908-2015. Stan-dards Press of China, 2015 (in Chinese).
国家市场监督管理总局. 电弧焊与等离子焊接、切割用钨电极, GB/T 31908-2015. 中国标准出版社, 2015.
9 Zhang Q X, Zhao Q S. Tungsten molybdenum metallurgy, Metallurgical Industry Press, China, 2005, pp.293 (in Chinese).
张启修, 赵秦生. 钨钼冶金, 冶金工业出版社, 2005, pp.293.
10 Yang K, Chen W j, Yang J C, et al. China Tungsten Industry, 2022, 37(4), 37 (in Chinese).
杨坤, 陈文娟, 杨建参, 等. 中国钨业, 2022, 37(4), 37.
11 Chen W J, Life cycle evaluation of typical rare earth materials and material flow analysis of rare earth elements. Ph. D. Thesis, Beijing University of Technology, China, 2019 (in Chinese).
陈文娟, 典型稀土材料的生命周期评价及稀土元素物质流分析. 博士学位论文, 北京工业大学, 2019.
12 Ecoinvent Database Initiatives. http://www. ecoinvent. org/database/database.
13 Beijing University of Technology. Material Environmental Load Database-Sinocenter. http://cnmlca. bjut. edu. cn(in Chinese).
北京工业大学. 材料环境负荷基础数据库. http://cnmlca. bjut. edu. cn.
14 Environmental impact assessment report on the comprehensive utilization project of hunan co associated uranium resources (monazite) (preparation of rare earth chloride). China Nuclear 272 Uranium Co Ltd. http://sthjt. hunan. gov. cn/sthjt/xxgk/xzgs/jsxm/hpgs/jsslgk/201811/10141145/files/1e4254a4251c40469b55716078e7faef. pdf (in Chinese).
湖南共伴生铀资源(独居石)综合利用项目(氯化稀土制备部分)环境影响报告书. 中核二七二铀业有限责任公司. http://sthjt. hunan. gov. cn/sthjt/xxgk/xzgs/jsxm/hpgs/jsslgk/201811/10141145/files/1e4254-a4251c40469b55716078e7faef. pdf.
15 Han L, Mei Q, Lu Y M, et al. China Safety Science Journal, 2004 (7), 86 (in Chinese).
韩利, 梅强, 陆玉梅, 等. 中国安全科学学报, 2004(7), 86.
[1] 郭冰冰, 储嘉, 王艳, 牛荻涛. 碳化养护混凝土生命周期环境影响的评估[J]. 材料导报, 2024, 38(24): 23070186-10.
[2] 于晓涵, 李秀领, 马锐, 孙昊东, 苏振鹏. 基于LCA理论的装配式高延性再生微粉混凝土结构碳排放研究[J]. 材料导报, 2024, 38(23): 23070172-7.
[3] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[4] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[5] 周荷雯, 姚敦雪, 杨晴. 废弃塑料热解技术碳足迹研究进展[J]. 材料导报, 2024, 38(14): 22120220-8.
[6] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[7] 栗卓新, 祝静, 李红. 增材制造技术环境影响及其生命周期评价的研究进展[J]. 材料导报, 2021, 35(11): 11173-11179.
[8] 陈文娟, 龚先政, 高峰, 刘宇, 孙博学, 李小青, 王志宏. 四川氟碳铈矿生产氧化钕的环境影响分析[J]. 材料导报, 2020, 34(Z2): 315-318.
[9] 高思雯, 龚先政, 孙博学. 典型锂电池中间相炭微球负极材料生产的能耗与碳排放分析[J]. 材料导报, 2018, 32(22): 4022-4026.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed