Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24030022-6    https://doi.org/10.11896/cldb.24030022
  金属与金属基复合材料 |
锂离子电池正极集流体用涂碳铝箔的研究进展
张玲玲1, 郏永强1, 顾星宸1, 张子豪1, 巴志新1,2,*
1 南京工程学院材料科学与工程学院,南京 211167
2 江苏省先进结构材料与应用技术重点实验室,南京 211167
Research Progress on Carbon-coated Aluminum Foil for Cathode Current Collectors of Lithium Ion Batteries
ZHANG Lingling1, JIA Yongqiang1, GU Xingchen1, ZHANG Zihao1, BA Zhixin1,2,*
1 School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
2 Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China
下载:  全 文 ( PDF ) ( 5422KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为响应“双碳”目标,推进能源绿色低碳转型,锂离子电池在新能源领域得到了广泛的研究与应用。传统铝箔集流体与正极活性物质粘附性弱且在电解液中的耐蚀性差,容易生成氧化铝膜,从而影响锂离子电池的使用寿命。涂碳铝箔能够有效提高其与正极活性物质的粘附性,抑制电池极化,降低电池内阻,改善电池的倍率性能和循环性能,在锂离子电池领域应用前景广阔。本文基于最新研究成果,系统地介绍了铝箔的制备工艺,阐述了铝箔常用的表面处理方法及其对后续涂碳层的影响,总结了典型的涂碳工艺与涂碳材料,展望了未来涂碳铝箔的研究重点与发展趋势,为涂碳铝箔的发展和工艺研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张玲玲
郏永强
顾星宸
张子豪
巴志新
关键词:  锂离子电池  正极集流体  涂碳铝箔    
Abstract: In response to the “carbon peaking and carbon neutrality” goals and promoting the green and low-carbon transformation of energy, lithium ion batteries have been widely studied and applied in the field of new energy. The conventional aluminum foil current collectors have weak adhesion to the cathode active material and poor corrosion resistance in the electrolyte, and are easy to form an alumina film, thus affecting the service life of the lithium ion battery. Carbon-coated aluminum foil can effectively improve adhesion with the cathode active material, inhibit the polarization, reduce the internal resistance, and improve the rate performance and cycle performance of the battery. It has broad application prospects in lithium ion batteries. Based on the latest research results, this paper systematically introduces the preparation process of aluminum foil, expounds the common surface treatment methods of aluminum foil and its influence on the subsequent carbon-coated layer, summarizes the typical carbon-coated process and carbon-coated materials, and looks forward to the research focus and development trend of carbon-coated aluminum foil in the future, which provides a reference for the development and process research of carbon-coated aluminum foil.
Key words:  lithium ion battery    cathode current collector    carbon-coated aluminum foil
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TM912  
  TG146.21  
基金资助: 江苏省产学研合作项目(BY20231158);江苏省研究生科研与实践创新计划项目(SJCX24_1283)
通讯作者:  *巴志新,南京工程学院材料科学与工程学院教授、硕士研究生导师。目前主要从事金属材料腐蚀防护、机械装备材料表面工程、高性能动力电池用铝箔研发等方面的研究工作。bzhx@njit.edu.cn   
作者简介:  张玲玲,现为南京工程学院材料科学与工程学院硕士研究生,在巴志新教授的指导下进行研究。目前主要研究领域为锂离子电池铝箔集流体表面改性。
引用本文:    
张玲玲, 郏永强, 顾星宸, 张子豪, 巴志新. 锂离子电池正极集流体用涂碳铝箔的研究进展[J]. 材料导报, 2025, 39(12): 24030022-6.
ZHANG Lingling, JIA Yongqiang, GU Xingchen, ZHANG Zihao, BA Zhixin. Research Progress on Carbon-coated Aluminum Foil for Cathode Current Collectors of Lithium Ion Batteries. Materials Reports, 2025, 39(12): 24030022-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030022  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24030022
1 国家发展改革委, 国家能源局. 电力设备管理, 2021(7), 16.
2 Yu S Y, Luo W L, Xie J Y, et al. Progress in Chemistry, 2023, 35(4), 620 (in Chinese).
余抒阳, 罗文雷, 解晶莹, 等. 化学进展, 2023, 35(4), 620.
3 Zhong Z Q, Kong L Y, Huang S Z, et al. New Chemical Materials, 2020, 48(1), 189 (in Chinese).
钟泽钦, 孔令涌, 黄少真, 等. 化工新型材料, 2020, 48(1), 189.
4 Yoon S, Jang H S, Kim S, et al. Journal of Electroanalytical Chemistry, 2017, 797, 37.
5 Loghavi M M, Askari M, Babaiee M, et al. Journal of Electroanalytical Chemistry, 2019, 841, 107.
6 Shin D Y, Park D H, Ahn H J. Applied Surface Science, 2019, 475, 519.
7 Dai Y M, Wang X, Rui J Y, et al. Applied Surface Science, 2023, 626, 157227.
8 Cao L J, Li L L, Xue Z, et al. Journal of Porous Materials, 2020, 27, 1677.
9 Sulka G D, Stroobants S, Moshchalkov V, et al. Journal of the Electrochemical Society, 2002, 149(7), D97.
10 Chen P, Yao W B, Zhou Y, et al. Chinese Journal of Power Sources, 2015, 39(5), 900 (in Chinese).
陈萍, 姚汪兵, 周元, 等. 电源技术, 2015, 39(5), 900.
11 Li J, Rulison C, Kiggans J, et al. Journal of The Electrochemical Society, 2012, 159(8), A1152.
12 Onsrud M, Tezel A O, Fotedar S, et al. SN Applied Sciences, 2022, 4(8), 225.
13 Kuenzel M, Bresser D, Kim G T, et al. ACS Applied Energy Materials, 2019, 3(1), 218.
14 Zhuang L. Acta Physico-Chimica Sinica, 2018, 34(6), 557 (in Chinese).
庄林. 物理化学学报, 2018, 34(6), 557.
15 Li H, Wang L, Song Y Z, et al. Advanced Functional Materials, 2023, 33(49), 2305515.
16 Chen Z L, Zhang J W, Chen C. Modern Paint & Finishing, 2016, 19(9), 11 (in Chinese).
陈政伦, 张江伟, 陈成. 现代涂料与涂装, 2016, 19(9), 11.
17 Zhang G P, Yan X Y, Wang B, et al. Energy Storage Science and Technology, 2023, 12(7), 2134 (in Chinese).
张贵萍, 闫筱炎, 王兵, 等. 储能科学与技术, 2023, 12(7), 2134.
18 Dong Z F, Pan Q H, Huang S Z, et al. Light Alloy Fabrication Technology, 2023, 51(5), 1 (in Chinese).
董则防, 潘秋红, 黄寿志, 等. 轻合金加工技术, 2023, 51(5), 1.
19 Chen D B, Zhu H Y, Song P, et al. Light Alloy Fabrication Technology, 2022, 50(12), 25 (in Chinese).
陈登斌, 祝海燕, 宋盼, 等. 轻合金加工技术, 2022, 50(12), 25.
20 胡展奎, 廖孝艳, 金国康, 等. 中国专利, CN202211448212. 7, 2023.
21 徐成志, 任素贞, 万宝伟, 等. 中国专利, CN202210201104. 3, 2022.
22 Xiong M H, Feng L P, Li H Q. New Chemical Materials, 2023, 51(S1), 241 (in Chinese).
熊明华, 冯连朋, 李华清. 化工新型材料, 2023, 51(S1), 241.
23 Pham M T M, Darst J J, Walker W Q, et al. Cell Reports Physical Science, 2021, 2(3), 100360.
24 Liu Z K, Dong Y H, Qi X Q, et al. Energy & Environmental Science, 2022, 15(12), 5313.
25 Choudhury R, Wild J, Yang Y. Joule, 2021, 5(6), 1301.
26 Wang R, Liu Z K, Yan C, et al. Acta Physico-Chimica Sinica, 2023, 39(2), 87 (in Chinese).
汪茹, 刘志康, 严超, 等. 物理化学学报, 2023, 39(2), 87.
27 王天兵, 李学法, 张国平. CN202210983386. 7, 2022.
28 Yao W B, Zheng Z Y, Zhong G Q, et al. Journal of Alloys and Compounds, 2023, 941, 168937.
29 Zhang Z G, Song Y Z, Zhang B, et al. Advanced Energy Materials, 2023, 13(36), 2302134.
30 Cho E C, Chang-Jian C W, Wu Y J, et al. Journal of Power Sources, 2021, 506, 230060.
31 Li Y P. IOP Conference Series:Earth and Environmental Science, 2020, 514(4), 042019.
32 Li X, Deng S X, Banis M N, et al. ACS Applied Materials & Interfaces, 2019, 11(36), 32826.
33 Xu Z Y, Yao J J, Li J, et al. Chinese Journal of Power Sources, 2019, 43(11), 1771 (in Chinese).
徐志友, 姚建军, 李荐, 等. 电源技术, 2019, 43(11), 1771.
34 Du J, Kang L, Zhong Q F, et al. Industrial & Engineering Chemistry Research, 2019, 59(4), 1549.
35 Shabbir J. Optimized microstructure Al substrate for iCL-CNT growth for high energy density supercapacitors. Master’s Thesis, University of South-Eastern Norway, Norway, 2023.
36 Li J P, Dang H F, Yang W, et al. Electroplating & Finishing, 2015, 34(16), 914 (in Chinese).
李俊鹏, 党海峰, 杨伟等. 电镀与涂饰, 2015, 34(16), 914.
37 Wu H C, Wu H C, Lee E, et al. Electrochemistry Communications, 2010, 12(3), 488.
38 Li Z X, Liu Y P, Liang J, et al. Surface Technology, 2019, 48(8), 98 (in Chinese).
李朝霞, 刘玉鹏, 梁军, 等. 表面技术, 2019, 48(8), 98.
39 Tong X, Zhang F, Ji B, et al. Advanced Materials, 2016, 28(45), 9979.
40 崔日俊, 李国敏, 田军. 中国专利, CN201910357133. 7, 2020.
41 Lepage D, Savignac L, Saulnier M, et al. Electrochemistry Communications, 2019, 102, 1.
42 Vignal T, Banet P, Pinault M, et al. Electrochimica Acta, 2020, 350, 136377.
43 Du J, Xiao J, Li C Y, et al. Journal of Energy Storage, 2021, 33, 102165.
44 Deyab M A, Al-Qhatani M M. Zeitschrift für Physikalische Chemie, 2022, 236(1), 67.
45 Nara H, Mukoyama D, Shimizu R, et al. Journal of Power Sources, 2019, 409, 139.
46 Yamada M, Watanabe T, Gunji T, et al. Electrochem, 2020, 1(2), 124.
47 Tang S D, Wan L P, Guo M, et al. Chinese Journal of Power Sources, 2022, 46(11), 1238 (in Chinese).
唐世弟, 万里鹏, 郭密, 等. 电源技术, 2022, 46(11), 1238.
48 Zhang J Q, Zhang X Y, Niu Z H, et al. Chinese Battery Industry, 2023, 27(1), 1 (in Chinese).
张佳其, 张新月, 牛志红, 等. 电池工业, 2023, 27(1), 1.
49 Kim S Y, Song Y I, Wee J H, et al. Carbon, 2019, 153, 495.
50 Zhang G Q, Lin K, Qin X Y, et al. ACS Applied Materials & Interfaces, 2020, 12(33), 37034.
51 Zhang K B, Jia K L, Xu X M, et al. Energy Storage Science and Technology, 2022, 11(12), 3741 (in Chinese).
张凯博, 贾凯丽, 徐晓明, 等. 储能科学与技术, 2022, 11(12), 3741.
52 Wang R B, Li W W, Liu L T, et al. Journal of Electroanalytical Chemistry, 2019, 833, 63.
53 Li J, Han G X, Liu X F, et al. Chinese Battery Industry, 2018, 22(6), 323 (in Chinese).
李娟, 韩广欣, 刘兴福, 等. 电池工业, 2018, 22(6), 323.
54 Li M, Xiang J Y, Yang D H, et al. Energy Storage Science and Technology, 2020, 9(6), 1714 (in Chinese).
李敏, 相佳媛, 杨东辉, 等. 储能科学与技术, 2020, 9(6), 1714.
55 Chen Z J, Zhang Y M, Tian S, et al. Chinese Journal of Power Sources, 2019, 43(2), 333 (in Chinese).
陈志金, 张一鸣, 田爽, 等. 电源技术, 2019, 43(2), 333.
56 Chomkhuntod P, Sawangphruk M, Kongsawatvoragul K. ECS Transactions, 2020, 97(7), 3.
57 Chomkhuntod P, Sawangphruk M. Electrochemical Society Meeting Abstracts, 2021, 1(9), 491.
58 Ghai V, Chatterjee K, Agnihotri P K. Carbon Letters, 2021, 31, 473.
59 Jeong H, Jang J, Jo C. Chemical Engineering Journal, 2022, 446, 136860.
60 Wang R B. Graphene composite preparation and energy storage applications. Ph. D. Thesis, University of Science and Technology of China, China, 2018 (in Chinese).
王汝冰. 石墨烯复合材料制备及其储能应用研究. 博士学位论文, 中国科学技术大学, 2018.
61 Wang K X, Wang C Z, Yang H, et al. Nano Research, 2020, 13, 1948.
62 Wang M Z, Yang H, Wang K X, et al. Nano Letters, 2020, 20(3), 2175.
63 Ye R, James D K, Tour J M. Accounts of Chemical Research, 2018, 51(7), 1609.
64 Bobinger M R, Romero F J, Salinas-Castillo A, et al. Carbon, 2019, 144, 116.
65 Rodrigues J, Zanoni J, Gaspar G, et al. Nanoscale Advances, 2019, 1(8), 3252.
66 Ding R, Li W H, Wang X, et al. Journal of Alloys and Compounds, 2018, 764, 1039.
67 Chen J Q, Bai Z H, Li X T, et al. Applied Surface Science, 2022, 606, 155002.
68 Wang Y L, Li Y H, Huang Y S. Battery Bimonthly, 2021, 51(1), 50 (in Chinese).
王盈来, 李艳红, 黄燕山. 电池, 2021, 51(1), 50.
[1] 姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
[2] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[3] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[4] 李龙飞, 郑永泉, 万旺军, 徐至宏, 汪清利, 王琛, 贺馨平, 夏新辉, 夏阳. 锂离子电池缺陷检测技术及失效机理分析研究进展[J]. 材料导报, 2025, 39(11): 24100016-9.
[5] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[6] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[7] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[8] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[9] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[10] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[11] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[12] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[13] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[14] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[15] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed