Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24030061-15    https://doi.org/10.11896/cldb.24030061
  高分子与聚合物基复合材料 |
海藻酸钠复合凝胶微球的制备及环境应用研究进展
杨锦, 罗亚娟, 李连燚, 姜宇洋, 姜桂英, 刘世亮*
河南农业大学资源与环境学院,郑州 450046
Progress in the Preparation and Environmental Application of Sodium Alginate-based Composite Gel Beads
YANG Jin, LUO Yajuan, LI Lianyi, JIANG Yuyang, JIANG Guiying, LIU Shiliang*
College of Resource and Environment, Henan Agricultural University, Zhengzhou 450046, China
下载:  全 文 ( PDF ) ( 25502KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 土壤和水污染问题是人类社会可持续发展面临的重大挑战。海藻酸钠凝胶微球具备出色的吸附性和传质性,并且合成简单、环境友好、经济适用,近年来其在环境修复领域的应用得到广泛关注。然而,传统海藻酸钠凝胶微球结构单一,表面官能团寡少,机械强度低,环境修复效果并不理想。利用生物炭、天然矿物、纳米材料以及有机化合物等对其进行功能化构建海藻酸钠复合凝胶微球,是扩充其环境应用场景、提升环境修复性能的有效策略。本文重点介绍了不同类型的海藻酸钠复合凝胶微球的制备方法及理化特性,总结了其在水体污染物净化、土壤修复改良方面的最新研究进展,并对其环境修复机制进行了深入讨论。最后,对海藻酸钠复合凝胶微球的未来发展趋势进行了展望,以期进一步推动该类材料在环境领域的应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨锦
罗亚娟
李连燚
姜宇洋
姜桂英
刘世亮
关键词:  海藻酸钠  土壤修复  污水处理  重金属  有机污染物    
Abstract: The issue of soil and water pollution poses a formidable challenge to the sustainable development of human society. Sodium alginate gel beads possess exceptional adsorption and mass transfer properties, are facile to synthesize, environmentally benign, and economically viable. Consequently, their utilization in the realm of environmental remediation has garnered considerable attention in recent years. However, conventional sodium alginate gel beads exhibit a singular structure, limited surface functional groups, inadequate mechanical strength, and suboptimal efficacy in environmental remediation. The functionalization of sodium alginate composite gel beads with biochar, natural minerals, nanomaterials, and organic compounds represents a highly effective strategy for broadening its environmental applications and enhancing its performance in environmental remediation. The present paper provides an overview of the preparation methods and physical and chemical properties of sodium alginate composite gel beads of various types. Furthermore, it summarizes the latest advancements in water pollution purification and soil reme-diation, while also discussing the underlying mechanisms involved in environmental remediation. Finally, it offers a prospective outlook on the future development trends of sodium alginate composite gel beads, aiming to further enhance their application potential within the field of environmental science.
Key words:  sodium alginate    soil remediation    wastewater treatment    heavy metal    organic pollutant
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  X703  
  X53  
基金资助: 河南省科技攻关项目(232102111029);国家重点研发计划项目(2021YFD1700904);河南农业大学大学生创新创业训练项目(2023CX165)
通讯作者:  *刘世亮,河南农业大学资源与环境学院教授、博士研究生导师。目前主要从事土壤肥力调控与地力提升、污染土壤生物修复等方面的研究工作。shlliu70@163.com   
作者简介:  杨锦,河南农业大学资源与环境学院讲师,硕士研究生导师。目前主要从事土壤肥力调控及污染修复方面的研究工作。
引用本文:    
杨锦, 罗亚娟, 李连燚, 姜宇洋, 姜桂英, 刘世亮. 海藻酸钠复合凝胶微球的制备及环境应用研究进展[J]. 材料导报, 2025, 39(12): 24030061-15.
YANG Jin, LUO Yajuan, LI Lianyi, JIANG Yuyang, JIANG Guiying, LIU Shiliang. Progress in the Preparation and Environmental Application of Sodium Alginate-based Composite Gel Beads. Materials Reports, 2025, 39(12): 24030061-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030061  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24030061
1 Münzel T, Hahad O, Daiber A, et al. Cardiovascular Research, 2023, 119(2), 440.
2 Lee H, Sam K, Coulon F, et al. Science of the Total Environment, 2024, 912, 168769.
3 Issaka E, Fapohunda F O, Amu-Darko J, et al. Chemosphere, 2022, 297, 134163.
4 Fuller R, Landrigan P J, Balakrishnan K, et al. The Lancet Planetary Health, 2022, 6(6), e535.
5 Mazarji M, Bayero M T, Minkina T, et al. Science of the Total Environment, 2023, 880, 163330.
6 Wei J X, Chen M Y, Wang J. TrAC-Trends in Analytical Chemistry, 2023, 166, 117214.
7 Yuan W Y, Xie J Y, Wang X Y, et al. Chemical Engineering Journal, 2023, 466, 143109.
8 Cui X W, Cao X F, Xue W X, et al. Science of the Total Environment, 2023, 873, 162202.
9 Wang D, Zhang J F, Li J X. Chemical Engineering Journal, 2023, 475, 145910.
10 Zhang W F, Liu F, Sun Y G, et al. Applied Catalysis B:Environmental, 2019, 259, 118046.
11 Elshahawy M F, Ahmed N A, Mohamed R D, et al. International Journal of Biological Macromolecules, 2023, 243, 125121.
12 Gao X P, Guo C, Hao J J, et al. International Journal of Biological Macromolecules, 2020, 164, 4423.
13 Ni C H, Chen N Y, He J H, et al. Water Research, 2023, 246, 120705.
14 Mohammadi S, Moussavi G, Shekoohiyan S, et al. Chemical Engineering Journal, 2021, 411, 127738.
15 Cong Y Q, Chen X, Zheng Q Y, et al. Environmental Research, 2022, 215, 114414.
16 Leng R, Sun Y C, Wang C Z, et al. Environmental Science & Technology, 2023, 57(26), 9615.
17 Balakrishnan A, Chinthala M, Polagani R K. Carbohydrate Polymers, 2024, 323, 121420.
18 Wang B, Wan Y S, Zheng Y L, et al. Critical Reviews in Environmental Science and Technology, 2019, 49(4), 318.
19 He Y N, Sun R Y, Zhang D F, et al. Journal of Hazardous Materials, 2023, 460, 132322.
20 Salem D B, Ouakouak A, Touahra F, et al. Bioresource Technology, 2023, 383, 129225.
21 Thakur S, Pandey S, Arotiba O. Carbohydrate Polymers, 2016, 153, 34.
22 Fan S L, Zhou J R, Zhang Y J, et al. Bioresource Technology, 2020, 306, 123128.
23 Feng Q W, Chen M, Wu P, et al. Chemical Engineering Journal, 2022, 429, 132166.
24 Fernando I P S, Lee W, Han E J, et al. Chemical Engineering Journal, 2020, 391, 123823.
25 Sawut A, Wu T M, Simayi R, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023, 678, 132531.
26 Bojorges H, López-Rubio A, Martínez-Abad A, et al. Trends in Food Science & Technology, 2023, 140, 104142.
27 Teng K, An Q, Chen Y, et al. ACS Biomaterials Science & Engineering, 2021, 7(4), 1302.
28 Ruvinov E, Cohen S. Advanced Drug Delivery Reviews, 2016, 96, 54.
29 Cao L Q, Lu W, Mata A, et al. Carbohydrate Polymers, 2020, 242, 116389.
30 Yerramathi B B, Muniraj B A, Kola M, et al. International Journal of Biological Macromolecules, 2023, 253(4), 127067.
31 Abdel-Halim E S, Al-Deyab S S. Carbohydrate Polymers, 2011, 84(1), 454.
32 Hu C, Lu W, Mata A, et al. International Journal of Biological Macromolecules, 2021, 177, 578.
33 Yan P, Lan W Q, Xie J. Trends in Food Science & Technology, 2024, 143, 104217.
34 Lee K Y, Mooney D J. Progress in Polymer Science, 2012, 37(1), 106.
35 Urbanova M, Macku J, Kubova K, et al. Food Hydrocolloids, 2024, 150, 109693.
36 Ching S H, Bansal N, Bhandari B. Critical Reviews in Food Science and Nutrition, 2017, 57(6), 1133.
37 Yang C H, Wang M X, Haider H, et al. ACS Applied Materials & Interfaces, 2013, 5(21), 10418.
38 Feng L H, Zhang Q, Ji F Y, et al. Chemical Engineering Journal, 2022, 430, 132754.
39 Guo X, Wang Y, Qin Y M, et al. International Journal of Biological Macromolecules, 2020, 162, 618.
40 Weng Y L, Yang G, Li Y, et al. Advances in Colloid and Interface Science, 2023, 318, 102957.
41 Li J, Wei G, Liu G, et al. Advance Science, 2023, 10(15), e2207381.
42 Lee B B, Ravindra P, Chan E S. Chemical Engineering & Technology, 2013, 36(10), 1627.
43 He Y, Sun M, Wang J, et al. Acta Biomaterialia, 2022, 151, 512.
44 Guerrero J D, Marchesini F A, Ulla M A, et al. International Journal of Biological Macromolecules, 2023, 253, 126416.
45 Chen T, Wen X C, Li X Y, et al. Bioresource Technology, 2023, 381, 129130.
46 Saejung C, Phonaiam S, Kotthale P, et al. Carbohydrate Polymers, 2024, 324, 121532.
47 De-Bashan L E, Moreno M, Hernandez J, et al. Water Research, 2002, 36(12), 2941.
48 Nayak A K, Hasnain M S. Alginates in Drug Delivery. Academic Press, USA, 2020, pp.71.
49 Lin F L, Zhao X Y, Yang S J, et al. Food Hydrocolloids, 2021, 119, 106843.
50 Yan H Q, Chen X Q, Li J C, et al. Carbohydrate Polymers, 2016, 136, 757.
51 Shi T Z, Xie Z F, Zhu Z, et al. Carbohydrate Polymers, 2022, 276, 118797.
52 Qu J H, Li Z R, Wu Z H, et al. Chemical Engineering Journal, 2023, 461, 142079.
53 Khajavi P, Keshtkar A R, Moosavian M A. Progress in Nuclear Energy, 2021, 140, 103887.
54 Gao X P, Zhang Y, Zhao Y M. Carbohydrate Polymers, 2017, 159, 108.
55 E Z Y, Liang JJ, Li P, et al. Water Research, 2023, 120994.
56 Lim Y, Kim B, Jang J, et al. Journal of Hazardous Materials, 2022, 436, 129245.
57 Fila D, Hubicki Z, Kołodyńska D. Chemical Engineering Journal, 2022, 446, 137245.
58 Zhao C H, Hu L L, Zhang C G, et al. Environmental Pollution, 2021, 287, 117303.
59 He X, Nkoh J N, Shi R, et al. Environmental Pollution, 2022, 313, 120175.
60 Gao L, Li Z H, Yi W M, et al. Journal of Environmental Chemical Engineering, 2023, 11(1), 109074.
61 Haciosmanoglu G G, Mejias C, Martin J, et al. Journal of Environmental Management, 2022, 317, 115397.
62 Liu S, Fan F Q, Ni Z K, et al. Journal of Cleaner Production, 2023, 385, 135649.
63 Chang P, Mukhopadhyay R, Sarkar B, et al. Applied Clay Science, 2023, 245, 107127.
64 Xi H, Jiang H L, Zhao D, et al. Journal of Cleaner Production, 2021, 313, 127773.
65 Ahmad A R D, Imam S S, Adnan R, et al. International Journal of Biological Macromolecules, 2023, 229, 838.
66 Ray S, Jana N. Carbon Nanomaterials for Biological and Medical Applications. Elsevier, Netherlands, 2017, pp.205.
67 Scaria J, Gopinath A, Ranjith N, et al. Journal of Cleaner Production, 2022, 350, 131319.
68 Yu S J, Pang H W, Huang S Y, et al. Science of the Total Environment, 2021, 800, 149662.
69 Zhao C X, Wang B, Theng B K G, et al. Science of the Total Environment, 2021, 767, 145305.
70 Du H H, Zhang D D, Peng F, et al. Progress in Materials Science, 2024, 142, 101220.
71 Zhang Y X, Luo J, Zhang H S, et al. Science of the Total Environment, 2022, 852, 158201.
72 Li Z H, Xu S Y, Xiao G H, et al. Journal of Environmental Management, 2019, 244, 33-39.
73 Nan Y, Wang J L, Chang X, et al. Carbohydrate Polymers, 2023, 300, 120259.
74 Ma H, Yang Y L, Yin F Y, et al. Journal of Cleaner Production, 2022, 333, 130229.
75 Germanos G, Youssef S, Farah W, et al. Journal of Environmental Chemical Engineering, 2020, 8(5), 104223.
76 Hassan A, El-Naggar G, Braish A, et al. International Journal of Biolo-gical Macromolecules, 2023, 249, 126075.
77 Tao L N, Shi C P, Zi Y, et al. Food Hydrocolloids, 2024, 147, 109338.
78 Khan S U, Sultan M, Islam A, et al. International Journal of Biological Macromolecules, 2021, 182, 72.
79 Zhang W, Deng Q, He Q L, et al. Chemical Engineering Journal, 2018, 351, 462.
80 He Y N, Chen J B, Lv J P, et al. Journal of Cleaner Production, 2022, 373, 133790.
81 Rana A K, Gupta V K, Hart P, et al. Environmental Research, 2023, 243, 117889.
82 Liao Q, Rong H W, Zhao M H, et al. Journal of Hazardous Materials, 2022, 422, 126863.
83 Zeng H P, Wang F S, Xu K, et al. International Journal of Biological Macromolecules, 2020, 149, 1222.
84 Qu P, Li Y C, Huang H Y, et al. Journal of Hazardous Materials, 2020, 396, 122664.
85 Benettayeb A, Guibal E, Morsli A, et al. Chemical Engineering Journal, 2017, 316, 704.
86 Shehzad H, Ahmed E, Sharif A, et al. International Journal of Biological Macromolecules, 2020, 144, 362.
87 Moghaddam S A E, Harun R, Mokhtar M N, et al. Journal of Water Process Engineering, 2020, 33, 101057.
88 Wang Y Y, Wang H L, Wang X M, et al. Science of the Total Environment, 2020, 730, 139034.
89 Bustos-Terrones Y A, Bandala E R, Moeller-Chávez G E, et al. Water Science and Engineering, 2022, 15(2), 125.
90 Arica M Y, Arpa C, Ergene A, et al. Carbohydrate Polymers, 2003, 52(2), 167.
91 Arica M Y, Bayramolu G, Yılmaz M, et al. Journal of Hazardous Materials, 2004, 109(1), 191.
92 Ahmad A, Bhat A H, Buang A. Journal of Cleaner Production, 2018, 171, 1361.
93 Tiwari H, Tripathi P, Sonwani R K, et al. Bioresource Technology, 2023, 387, 129614.
94 He Y N, Jia X X, Zhou S X, et al. Separation and Purification Technology, 2022, 303, 122212.
95 Hassan M, Deb A, Qi F, et al. Journal of Cleaner Production, 2021, 319, 128694.
96 Chen J, Ouyang J B, Cai X H, et al. Separation and Purification Technology, 2021, 276, 119371.
97 Isik Z, Saleh M, Dizge N. Surfaces and Interfaces, 2021, 26, 101330.
98 Li H B, Wang Y W, Zhao Y W, et al. Journal of Environmental Chemical Engineering, 2023, 11(5), 110875.
99 Bacelo H, Pintor A M A, Santos S C R, et al. Chemical Engineering Journal, 2020, 381, 122566.
100 Vu C T, Wu T T. Journal of Cleaner Production, 2022, 379, 134508.
101 Keyikoglu R, Khataee A, Yoon Y. Advances in Colloid and Interface Science, 2022, 300, 102598.
102 Karthikeyan P, Meenakshi S. Environmental Chemistry and Ecotoxicology, 2021, 3, 42.
103 Fizir M, Touil S, Richa A, et al. Applied Clay Science, 2024, 256, 107430.
104 Tang S X, Yang J Y, Lin L Z, et al. Chemical Engineering Journal, 2020, 393, 124728.
105 Zhang W, Ou J, Wang B, et al. Journal of Hazardous Materials, 2021, 418, 126358.
106 Elwakeel K Z, Ahmed M M, Akhdhar A, et al. International Journal of Biological Macromolecules, 2023, 253, 126884.
107 Sutirman Z A, Sanagi M M, Wan Aini W I. International Journal of Biological Macromolecules, 2021, 174, 216.
108 Zhao R H, Wang B, Wu P, et al. Science of the Total Environment, 2023, 894, 164810.
109 Du M X, Cao Y Y, Luo X L, et al. Chemical Engineering Journal, 2023, 475, 146289.
110 Omer A M, Khalifa R E, Hu Z H, et al. International Journal of Biological Macromolecules, 2019, 125, 1221.
111 Li Y F, Wen J, Xue Z Z, et al. Journal of Hazardous Materials, 2022, 426, 127809.
112 Zhang W, Wang H Y, Hu X L, et al. Journal of Cleaner Production, 2019, 231, 733.
113 Kim N, Cha B, Yea Y, et al. Chemical Engineering Journal, 2022, 450, 138068.
114 Mohammad-Rezaei R, Khalilzadeh B, Rahimi F, et al. Environmental Research, 2022, 214, 113966.
115 Benhouria A, Islam M A, Zaghouane-Boudiaf H, et al. Chemical Engineering Journal, 2015, 270, 621.
116 Rocher V, Siaugue J, Cabuil V, et al. Water Research, 2008, 42(4), 1290.
117 Munagapati V S, Wen H, Gollakota A R K, et al. International Journal of Biological Macromolecules, 2023, 246, 125675.
118 Mokhtar A, Abdelkrim S, Hachemaoui M, et al. International Journal of Biological Macromolecules, 2023, 251, 126270.
119 Luo Z F, Chen H Y, Wu S C, et al. Chemosphere, 2019, 237, 124493.
120 Wang Y Q, Gao Y W, Gu J H, et al. Environmental Research, 2023, 232, 116339.
121 Jiang T, Wang B, Gao B, et al. Journal of Hazardous Materials, 2023, 442, 130075.
122 Qin G, Song X Y, Chen Q, et al. Applied Catalysis B:Environmental, 2024, 344, 123640.
123 Jain B, Singh A K, Kim H, et al. Environmental Chemistry Letters, 2018, 16(3), 947.
124 Huang L Y, Zheng J H, Ke J Q, et al. Chemosphere, 2023, 341, 140021.
125 Kong Y, Zhuang Y, Shi B Y. Journal of Hazardous Materials, 2020, 382, 121060.
126 Liu D, Gu W Y, Zhou W Q et al. Journal of Cleaner Production, 2022, 369, 133239.
127 EI-Fakir A A, Anfar Z, Amedlous A, et al. Applied Catalysis B:Environmental, 2021, 286, 119948.
128 Chen Y X, Yuan Y M, Yang H Y, et al. Separation and Purification Technology, 2024, 330, 125435.
129 Falletta E, Longhi M, Di Michele A, et al. Journal of Cleaner Production, 2022, 371, 133641.
130 Gao Y W, Li Y X, Zou D L. Chemical Engineering Journal, 2024, 480, 148049.
131 Li Z H, Jing Y Q, Zhang X X, et al. Journal of Environmental Chemical Engineering, 2023, 11(5), 110693.
132 Zuo W L, Song B Y, Shi Y X, et al. Chemosphere, 2022, 307, 135797.
133 Yuan X H, Yu S T, Xue N D, et al. Environmental Research, 2023, 221, 114820.
134 Zhu C Y, Zhang C, Zhang M, et al. Environmental Technology & Innovation, 2021, 24, 102059.
135 Wu M, Wang Q, Wang C, et al. Ecotoxicology and Environmental Safety, 2022, 243, 113956.
136 Wang N N, Wang B, Wan Y S, et al. Journal of Environmental Ma-nagement, 2023, 348, 119133.
137 Feng Q W, Chen M, Wu P, et al. Soil & Tillage Research, 2022, 223, 105495.
138 Wang W C, Qu K Q, Zhang X R, et al. Journal of Agricultural and Food Chemistry, 2021, 69(45), 13386.
[1] 魏鑫, 焦芬, 刘维, 顾丝雨, 汪辰, 覃文庆. 垃圾飞灰与粉煤灰协同熔融制备CAS体系微晶玻璃的研究[J]. 材料导报, 2025, 39(1): 23120096-8.
[2] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[3] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[4] 齐亚兵, 贾宏磊. 活化亚硫酸(氢)盐降解有机污染物的研究进展[J]. 材料导报, 2024, 38(3): 22060274-13.
[5] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[6] 褚洪岩, 史文芳, 王群, 蒋金洋. 采用城市生活垃圾焚烧飞灰制备绿色水泥砂浆的可行性研究[J]. 材料导报, 2024, 38(19): 23070076-7.
[7] 陶铸, 梁燕霞, 黄光法, 江莉, 任骊, 金路, 卫国英. 粉煤灰基材料在水处理方面的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010002-8.
[8] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[9] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[10] 郑伍魁, 赵丹, 朱毅, 张静洁, 杨雨玄, 王飞, 崔添, 李辉. 陶粒工程应用的趋势分析及研究进展[J]. 材料导报, 2023, 37(7): 21120251-12.
[11] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[12] 包亚晴, 黄李金鸿, 李新冬, 黄彪林, 黄万抚. PDA夹层调控的荷正电纳滤膜的制备及在水处理中的应用[J]. 材料导报, 2023, 37(6): 21090216-8.
[13] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[14] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[15] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed