Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21120046-8    https://doi.org/10.11896/cldb.21120046
  无机非金属及其复合材料 |
稻壳灰改性沥青混合料性能研究及路面结构动力响应分析
殷鹏1, 潘宝峰1,*, 康泽华2, 王宝民1
1 大连理工大学建设工程学部,辽宁 大连 116023
2 保利房地产开发有限公司,辽宁 大连 116023
Study on Performance of Rice Husk Ash Modified Asphalt Mixture and Dynamic Response Analysis of Pavement Structure
YIN Peng1, PAN Baofeng1,*, KANG Zehua2, WANG Baomin1
1 Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116023, Liaoning, China
2 Poly Real Estate Development Co.,Ltd., Dalian 116023, Liaoning, China
下载:  全 文 ( PDF ) ( 11109KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 农副产品与废弃物成为环境污染的主要原因,为了减少其对环境造成的破坏及避免资源的浪费,本研究在活性稻壳灰及稻壳灰改性沥青的制备工艺研究的基础上,开展稻壳灰改性沥青混合料服役性能的研究。为此,通过分形理论对矿料级配设计加以优化分析,在保证沥青混合料性能可靠性的同时,研究了级配对混合料体积参数的影响;采用路面性能试验对比分析改性前后沥青混合料路面性能的差异性,并结合移动荷载作用下的三维有限元模型对混合料的路面结构进行相应分析,探寻稻壳灰改性沥青混合料的服役机理。结果表明:分形理论可以较好地描述分形维数值与混合料体积参数之间的关联性,所建立的预估方程模型可以较好地对混合料的体积参数进行预测;稻壳灰改性后,混合料的高温性能及水稳定性得到改善,虽然其低温性能有所衰减,但仍满足使用要求;有限元模型表明改性稻壳灰对基质沥青混合料的服役性能具有显著的改善效果,可以用来较好地量化分析沥青混合料服役时的各向异性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
殷鹏
潘宝峰
康泽华
王宝民
关键词:  稻壳灰  沥青混合料  分形理论  路用性能  有限元    
Abstract: Agricultural products and waste become the main cause of environmental pollution. To reduce the damage to the environment and avoid the waste of resources, this study was conducted to investigate the service performance of rice husk ash modified asphalt mixtures based on the preparation process of active rice husk ash and rice husk ash modified asphalt. For this, the orthogonal test was used to develop the rice husk ash modified asphalt with excellent performance, and the effect of the preparation process on the physical properties of the modified asphalt was investigated. The fractal theory was used to optimize the gradation design of mineral materials, and the influence of gradation on the volume parameters of asphalt mixture was studied while the reliability of performance ratio was ensured. Pavement performance test was used to analyze the difference of pavement performance of asphalt mixture before and after modification, and the pavement structure of asphalt mixture was analyzed with three-dimensional finite element model under moving load, so as to explore the service mechanism of rice husk ash modified asphalt mixture. The results showed that the fractal theory can better describe the correlation between the fractal dimensional values and the volume parameters of the mixture, and the prediction equation model was established to well predict the volume parameters of the mixture. The high-temperature performance and water stability of the mixture were improved after the modification of rice husk ash, although its low-temperature performance was attenuated, it still met the requirements. The finite element model showed that the modification of rice husk ash greatly improved the service performance of the matrix asphalt mixture, which can be used to better quantify the anisotropy of the asphalt mixture in service.
Key words:  rice husk ash    asphalt mixture    fractal theory    pavement performance    finite element
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  U414  
基金资助: 国家自然科学基金(ZX20200856)
通讯作者:  *潘宝峰,大连理工大学建设工程学部教授、博士研究生导师,1990年毕业于大连理工大学公路与城市道路专业,1998、2010年分别获得大连理工大学结构工程硕士、博士学位。曾任交通运输学院党支部书记兼副院长,主要从事道路新材料的研发与应用,近年来主持或参与国家自然科学基金等各类科研项目40余项;获省部级科技进步奖2项、市级科技进步奖1项;发表学术论文近50篇,出版学术专著9部,授权发明专利3项。panbf@dlut.edu.cn   
作者简介:  殷鹏,2021年毕业于重庆交通大学,获得工程硕士学位。现为大连理工大学建设工程学部博士研究生,在潘宝峰教授的指导下进行研究,主要从事道路建筑材料和结构方面的研究。
引用本文:    
殷鹏, 潘宝峰, 康泽华, 王宝民. 稻壳灰改性沥青混合料性能研究及路面结构动力响应分析[J]. 材料导报, 2023, 37(14): 21120046-8.
YIN Peng, PAN Baofeng, KANG Zehua, WANG Baomin. Study on Performance of Rice Husk Ash Modified Asphalt Mixture and Dynamic Response Analysis of Pavement Structure. Materials Reports, 2023, 37(14): 21120046-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120046  或          http://www.mater-rep.com/CN/Y2023/V37/I14/21120046
1 Sengoz B, Topal A. Construction and Building Materials, 2005, 19(5), 337.
2 Lesueur D. Advances in Colloid and Interface Science, 2009, 145(1-2), 42.
3 Rusbintardjo G, Hainin M R, Yusoff N I M. Construction and Building Materials, 2013, 49, 702.
4 Ziari H, Babagoli R, Akbari A. Road Materials and Pavement Design, 2014, 16(1), 101.
5 Arabani M, Tahami S A, Taghipoor M. Road Materials and Pavement Design, 2017, 18(3), 713.
6 Arabani M, Babamohammadi S, Azarhoosh A R. International Journal of Pavement Engineering, 2015, 16(6), 502.
7 Gómez-Meijide B, Pérez I, Airey G, et al. Construction and Building Materials, 2015, 77, 168.
8 Arabani M, Tahami S A, Hamedi G H. Road Materials and Pavement Design, 2018, 19(5), 1241.
9 Huang B, Shu X, Vukosavljevic D. Journal of Material and Civil Engineering, 2010, 23(11), 1535.
10 Beagle E C. Rice husk conversion to energy, Food and Agriculture Organization of the United Nations, Italy, 1978, pp. 155.
11 Liang Shiqing, Sun Bocheng. Concrete, 2009(2), 73 (in Chinese).
梁世庆, 孙波成. 混凝土, 2009(2), 73.
12 Bhattacharya S C, Salam P A, Pham H L, et al. Biomass and Bioenergy, 2003, 25(5), 471.
13 Foroutan M S A, Khabiri M M, Kavussi A, et al. Construction and Building Materials, 2016, 125, 408.
14 Sinsiri T, Kroehong W, Jaturapitakkul C, et al. Materials and Design, 2012, 42, 424.
15 Xue Y, Wu S, Cai J, et al. Construction and Building Materials, 2014, 56, 7.
16 Arabani M, Tahami S A. Construction and Building Materials, 2017, 149, 350.
17 Han Z, Sha A, Tong Z, et al. Construction and Building Materials, 2017, 147. 776.
18 Ouyang Dong. China Building Materials, 2003(6), 42 (in Chinese).
欧阳东. 中国建材, 2003(6), 42.
19 Wei Haibin, Ma Zipeng, Liu Hantao, et al. Journal of Jilin University (Engineering and Technology Edition), DOI:10. 13229/j. cnki. jdxbgxb20210640 (in Chinese).
魏海斌, 马子鹏, 刘汉涛, 等. 吉林大学学报(工学版), DOI:10. 13229/j. cnki. jdxbgxb20210640
20 Liu Fuqiang, Zheng Mulian, Wang Shuai, et al. Journal of Shenyang Jianzhu University (Natural Science), 2021, 37(6), 1090 (in Chinese).
刘富强, 郑木莲, 王帅, 等. 沈阳建筑大学学报(自然科学版), 2021, 37(6), 1090.
21 Li Yule, Wu Guoxiong, He Zhaoyi, et al. Highway, 2021, 66(11), 1 (in Chinese).
李余乐, 吴国雄, 何兆益, 等. 公路, 2021, 66(11), 1.
22 Huang Wanqing, Cao Mingming, You Hong. Journal of Highway and Transportation Research and Development, 2020, 37(4), 1 (in Chinese).
黄晚清, 曹明明, 游宏. 公路交通科技, 2020, 37(4), 1.
23 Chen Shangjiang, Zhang Xiaoning. Journal of Building Materials, 2013, 16(3), 451 (in Chinese).
陈尚江, 张肖宁. 建筑材料学报, 2013, 16(3), 451.
24 Su Xiuli, Li Bo, Liu Jianxun, et al. Journal of Chang’an University(Natural Science Edition), 2011, 31(2), 12 (in Chinese).
宿秀丽, 李波, 刘建勋, 等. 长安大学学报(自然科学版), 2011, 31(2), 12.
25 Wang Lijiu, Liu Hui. China Journal of Highway and Transport, 2008(5), 6 (in Chinese).
王立久, 刘慧. 中国公路学报, 2008(5), 6.
26 Wang Lijiu, Liu Hui. Highway, 2008(1), 170 (in Chinese).
王立久, 刘慧. 公路, 2008(1), 170.
27 Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTG E20-2011), China Communication Press Co., Ltd., China, 2011 (in Chinese).
公路工程沥青及沥青混合料试验规程 (JTG E20-2011), 人民交通出版社, 2011.
28 Hou Yun, Dong Yuanshuai, Li Zhihao, et al. Journal of Chongqing Jiaotong University(Natural Science), 2021, 40(8), 120 (in Chinese).
侯芸, 董元帅, 李志豪, 等. 重庆交通大学学报(自然科学版), 2021, 40(8), 120.
29 Xia Quanping, Gao Jiangping, Zhang Qigong, et al. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(3), 541 (in Chinese).
夏全平, 高江平, 张其功, 等. 吉林大学学报(工学版), 2022, 52(3), 541.
30 Fu Zhen, Shi Ke, Song Ruimeng, et al. New Chemical Materials, 2020, 48(12), 236 (in Chinese).
傅珍, 史柯, 宋瑞萌, 等. 化工新型材料, 2020, 48(12), 236.
31 Huang Weirong, Wang Jiao, Yang Yuzhu, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(11), 3847 (in Chinese).
黄维蓉, 王娇, 杨玉柱, 等. 硅酸盐通报, 2021, 40(11), 3847.
32 Cao Liping, Zhang Xiaokang, Yang Chen, et al. Journal of Central South University(Science and Technology), 2021, 52(7), 2276 (in Chinese).
曹丽萍, 张晓亢, 杨晨, 等. 中南大学学报(自然科学版), 2021, 52(7), 2276.
[1] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[2] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[3] 陈守东, 陈敬琪, 李杰, 孙建, 卢日环. 复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟[J]. 材料导报, 2023, 37(2): 21050240-10.
[4] 陈守东, 卢日环, 孙建, 李杰. 异步冷轧少晶铜薄带局部变形的CP-FE模拟[J]. 材料导报, 2023, 37(14): 21120214-10.
[5] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[6] 冯云霞, 罗钰鸿, 牛开民, 郭鹏. 盐及环境耦合作用下沥青和混合料性能劣化规律及机理研究进展[J]. 材料导报, 2023, 37(13): 22050114-10.
[7] 张怀志, 金鑫, 黎享, 赵天颂. 聚氨酯/环氧树脂基混合料型耐久长效道路交通标线材料组合优化研究[J]. 材料导报, 2023, 37(12): 21120002-13.
[8] 柳力, 朱晓明, 刘朝晖, 李文博, 杨程程, 黄优, 刘磊鑫. 钢渣掺量对橡胶沥青混合料ARAC-13性能的影响[J]. 材料导报, 2023, 37(10): 22080175-7.
[9] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[10] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[11] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[12] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[13] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[14] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[15] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed