Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21050240-10    https://doi.org/10.11896/cldb.21050240
  金属与金属基复合材料 |
复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟
陈守东1,2,3,*, 陈敬琪2, 李杰1,3, 孙建1,3, 卢日环4
1 铜陵学院机械工程学院,安徽 铜陵244061
2 东北大学轧制技术及连轧自动化国家重点实验室,沈阳110819
3 铜陵学院工程液压机器人安徽普通高校重点实验室,安徽 铜陵244061
4 燕山大学国家冷轧板带装备及工艺工程技术研究中心,河北 秦皇岛 066004
Prediction of Deformation Localization of Copper Foil Compound Forming Rolling Using Crystal Plasticity Finite Element Simulations
CHEN Shoudong1,2,3,*, CHEN Jingqi2, LI Jie1,3, SUN Jian1,3, LU Rihuan4
1 School of Mechanical Engineering, Tongling University, Tongling 244061, Anhui, China
2 State Key Lab of Rolling and Automation, Northeastern University, Shenyang 110819, China
3 Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling University, Tongling 244061, Anhui, China
4 National Engineering Research Center for Equipment and Technology of Cold Rolled Strip, Yanshan University, Qinhuangdao 066004, Hebei, China
下载:  全 文 ( PDF ) ( 8101KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随极薄带厚度的进一步减薄,轧制极薄带变形由于轧件厚度/晶粒尺寸比值小的尺寸效应和变形程度导致各向异性与局部化已完全不同于轧制厚件时的变形特性。采用具有拉拔-压缩-剪切复合成形功能的微型异步轧机开展系列厚度铜极薄带的箔轧实验,结果表明复合成形轧制工艺和极薄带尺寸显著影响轧制力能参数与箔材质量。宏观有限元理论已不再适用出现这些新现象的极薄带轧制变形的建模。将嵌入初始晶粒形貌和取向等微观组织结构信息的介观晶体塑性有限元模型(CPFE)用于复合成形条件下铜极薄带轧制变形局部化的模拟与分析,指导箔轧工艺优化和提高箔材质量。晶粒层次的晶体塑性有限元模型,准确预测了单层晶铜极薄带轧制变形局部化的现象和趋势,模拟与实验的轧制力吻合较好,尤其是各向异性。随上下工作辊异速比的增大,箔材厚度方向剪切变形增强,变形带、滑移带形成且局部化趋势显著。晶粒变形局部化的差异,对轧制制备极薄带材的控形控性造成困难。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈守东
陈敬琪
李杰
孙建
卢日环
关键词:  极薄带轧制  铜箔  晶体塑性  有限元分析  变形局部化    
Abstract: With the further thinning of the foil thickness, the anisotropy and localization of the foil rolling are completely different from the deformation characteristics of the rolled thick strip due to the size effect and deformation degree of the smaller thickness/grain size. The applicants have conducted the copper ultra-thin strip fabricating research recently with the use of a mini asynchronous rolling mill which has the function of carrying out the compound forming with tension, compression and shearing. The experiment results show that the compound forming process and the ratio of foil thickness and grain size significantly influence the mechanical properties and foils quality. Macro mechanicals finite element modelling cannot be used to simulate such new phenomena encountered in foil rolling process. In this work, plastic deforming localization of copper foil compound forming rolling was characterized by meso-scale crystal plasticity finite element(CPFE)simulations. Initial grain orientation and grain morphology determined from experiments were incorporated into a single-layer crystal microstructure generated by grain growth model. This work can be optimization of foil rolling process and improve the foil quality. CPFE simulations using such a grain-scale modelling accurately capture local deformation behaviors and evolution of foil rolling. The predicted roll force-time agrees well with experimental results, especially in regard to anisotropic behavior. With increase in the rolling speed ratio between the upper and lower rolls driving strong shear deformation along foil thickness direction, deformation and slip bands are formed and the localization trend is enhanced. Remarkable variations of plastic deformation localization occur in grains, making it difficult to control the shape and properties of copper foils in compound forming rolling process.
Key words:  foil rolling    copper foil    crystal plasticity    finite element analysis    deformation localization
发布日期:  2023-02-08
ZTFLH:  TG335.5  
基金资助: 国家自然科学基金(51804219; 52005432);安徽省自然科学基金(1808085QE161);安徽省重点研究与开发计划项目(202004a05020011);安徽省高校优秀青年人才支持计划项目(gxyq2022093);安徽省高校优秀青年科研项目(2022AH030153);铜陵学院重点培育项目(2020tlxyxs33)
通讯作者:  *陈守东,博士,铜陵学院机械工程学院副教授。2010年7月本科毕业于铜陵学院机械工程学院,2016年7月在东北大学轧制技术及连轧自动化国家重点实验室材料加工工程取得博士学位。主要从事轧制制备高性能金属极薄带材和成形控性晶体塑性有限元研究工作,以第一作者的身份在International Journal of Mechanical Sciences、Transactions of Nonferrous Metals Society of China、《金属学报》等SCI学术期刊发表研究论文40余篇,授权国家发明专利2项。   
引用本文:    
陈守东, 陈敬琪, 李杰, 孙建, 卢日环. 复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟[J]. 材料导报, 2023, 37(2): 21050240-10.
CHEN Shoudong, CHEN Jingqi, LI Jie, SUN Jian, LU Rihuan. Prediction of Deformation Localization of Copper Foil Compound Forming Rolling Using Crystal Plasticity Finite Element Simulations. Materials Reports, 2023, 37(2): 21050240-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050240  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21050240
1 Chen J Q, Wang X G, Gao H T, et al. Surface and Coatings Technology, 2021, 410, 126881.
2 Yang H F, Xiong F, Wang Y, et al. International Journal of Machine Tools and Manufacture, 2020, 152, 103542.
3 Cui S Q, Zhai P B, Yang W W, et al. Nano Micro Small, 2020, 16(5), 1905620.
4 Xiao Z E, Chen J, Liu J, et al. Journal of Power Sources, 2019, 438, 226973.
5 Wang C J, Liu Y, Wan S X, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2019, 34(2), 404.
6 Liu Y, Wang C J, Han H B, et al. The International Journal of Advanced Manufacturing Technology, 2017, 93, 2243.
7 Zhang Q, Zhang T T, Dai M Q, et al. The International Journal of Advanced Manufacturing Technology, 2016, 85, 2265.
8 Chen J Q, Hu X L, Liu X H. Materials, 2019, 12(14), 2319.
9 Chen J Q, Yang L Q, Hu X L, et al. IOP Conference Series:Materials Science and Engineering, 2020, 892, 012001.
10 Chen S D, Liu X H, Liu L Z. International Journal of Mechanical Sciences, 2015, 100, 226.
11 Guan Y J, Chen B, Zou J W, et al. International Journal of Plasticity, 2017, 88, 70.
12 Lim H J, Bong H J, Chen S R, et al. Materials Science and Engineering A, 2018, 730, 50.
13 Pham C H, Thuillier S, Manach P Y. Materials Science and Engineering A, 2016, 678, 377.
14 Guo X Q, Wu P D, Wang H, et al. International Journal of Solids and Structures, 2016, 90, 12.
15 Chandra S, Samal M K, Chavan V M, et al. International Journal of Plasticity, 2018, 101, 188.
16 Lim H J, Battaile C C, Bishop J E, et al. International Journal of Plasticity, 2019, 121, 101.
17 Ma X G, Zhao J W, Du W, et al. Journal of Materials Research and Technology, 2019, 8(3), 3175.
18 Flipon B, Keller C, Quey R, et al. International Journal of Solids and Structures, 2020, 184, 178.
19 Lu X C, Zhao J F, Wang Z W, et al. International Journal of Plasticity, 2020, 130, 102703.
20 Xiao X Z, Chen L R, Yu L, et al. International Journal of Plasticity, 2019, 116, 216.
21 Liu M, Nambu S, Zhou K, et al. Metallurgical and Materials Transactions A, 2019, 50, 2399.
22 Sun F W, Meade E D, O'Dowd N P. International Journal of Plasticity, 2019, 119, 215.
23 Wei P T, Lu C, Liu H J, et al. Crystals, 2017, 7(12), 362.
24 Chen S D, Liu X H, Liu L Z. Acta Metallurgica Sinica(English Letters), 2015, 28(8), 1024.
25 Bassani J L, Wu T Y. Proceedings:Mathematical and Physical Sciences, 1991, 435(1893), 21.
26 Lim H, Carroll J D, Battaile C C, et al. International Journal of Plasticity, 2014, 60, 1.
27 Chen S D, Liu X H, Liu L Z, et al. Journal of Northeastern University(Natural Science), 2016, 37(5), 647(in Chinese).
陈守东, 刘相华, 刘立忠, 等. 东北大学学报(自然科学版), 2016, 37(5), 647.
28 Chen S D, Liu X H, Liu L Z, et al. Acta Metallurgica Sinica, 2016, 52(1), 120(in Chinese).
陈守东, 刘相华, 刘立忠, 等. 金属学报, 2016, 52(1), 120.
29 Chen S D, Lu R H, Sun J, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(2), 353(in Chinese).
陈守东, 卢日环, 孙建, 等. 中国有色金属学报, 2021, 31(2), 353.
30 Chen S D, Lu R H, Chen Z P, et al. Materials Reports, 2021, 35(4), 04170(in Chinese).
陈守东, 卢日环, 陈子潘, 等. 材料导报, 2021, 35(4), 04170.
[1] 李斌, 周薇. CFRP管约束混凝土柱轴压性能试验及有限元分析研究[J]. 材料导报, 2022, 36(Z1): 22040146-6.
[2] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[3] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[4] 陈守东, 卢日环, 陈子潘, 孙建, 李杰. 轧制单层晶铜箔滑移启动和应变局部化的晶体塑性模拟[J]. 材料导报, 2021, 35(4): 4170-4176.
[5] 余坤, 文立伟, 宦华松, 唐鹏刚. 缝合增强复合材料帽型加筋壁板界面拉脱性能[J]. 材料导报, 2021, 35(24): 24189-24194.
[6] 陈宗平, 许瑞天, 梁厚燃. 高温喷水冷却后再生卵石混凝土应力-应变本构关系及有限元分析[J]. 材料导报, 2021, 35(13): 13032-13040.
[7] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[8] 赵宇航, 高莹, 王永旺, 陈东, 张云峰. 粉煤灰制硅酸盐防腐砖在复杂工况下的性能退化研究[J]. 材料导报, 2020, 34(Z2): 304-307.
[9] 赵宇航, 王永旺. 硅酸盐胶黏剂在高温磨蚀条件下的退化行为[J]. 材料导报, 2020, 34(Z1): 181-184.
[10] 任重, 黄兴元, 柳和生. 塑料微管气辅挤出成型实验与机理分析[J]. 材料导报, 2020, 34(20): 20193-20198.
[11] 丁新东, 曹新明. 不同膨胀剂掺量的钢管混凝土短柱轴压试验研究[J]. 材料导报, 2019, 33(Z2): 327-330.
[12] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[13] 崔岩, 倪浩晨, 曹雷刚, 杨越, 王一鸣. SiC颗粒整形对高体分铝基复合材料力学性能的影响及有限元模拟[J]. 材料导报, 2019, 33(24): 4126-4130.
[14] 高南沙,侯宏. 三维局域共振型声子晶体低频带隙特性研究[J]. 《材料导报》期刊社, 2018, 32(2): 322-326.
[15] 桑健, 王波, 朱训明, 张洪涛, 王云峰, 金伟, 高丙路, 常青, 何鹏. T2铜箔热辅助超声波增材制造工艺[J]. 材料导报, 2018, 32(18): 3199-3207.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed