Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22020138-7    https://doi.org/10.11896/cldb.22020138
  无机非金属及其复合材料 |
沥青胶结料应变延迟恢复特性的动态剪切流变试验表征
兰添晖1, 刘旭2, 贾存兴3, 王凌一3, 张军朝3, 马国伟1, 张默1,*
1 河北工业大学土木与交通学院,天津 300401
2 交通运输部公路科学研究所,北京 100088
3 河北省高速公路京雄筹建处,河北 保定 071799
Delayed Strain Recovery Characterization of Asphalt Binder Based on Dynamic Shear Rheology Test
LAN Tianhui1, LIU Xu2, JIA Cunxing3, WANG Lingyi3, ZHANG Junzhao3, MA Guowei1, ZHANG Mo1,*
1 School of Civil & Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
2 Research Institute of Highway Ministry of Transport, Beijing 100088, China
3 Hebei Province Highway Jingxiong Preparatory Office, Baoding 071799, Hebei, China
下载:  全 文 ( PDF ) ( 7946KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青胶结料在中、高温条件下的变形恢复特性直接影响沥青混合料的抗车辙性能。传统的经验指标(针入度、软化点等)以及一些基于复数模量的力学性能指标在表征沥青的应变延迟恢复特性方面存在不足。本工作基于串联Maxwell模型和并联Kelvin模型所描述的力学行为差异及粘弹性力学参数的频率响应特征,提出了采用相位角频域曲线的斜率来表征沥青胶结料应变延迟恢复特性的方法。本研究综合分析了三种不同针入度水平的基质沥青和两种SBS改性沥青在30~70 ℃下的复数模量和相位角参数,发现相位角频域主曲线相比复数模量主曲线可以更清晰地反映不同类型沥青胶结料的粘弹力学特性差异。试验结果表明,SBS改性沥青的相位角并非如基质沥青随角频率增加单调降低,而是会在特定的温度、频率区间呈现增长趋势。此规律可用于表征沥青胶结料的应变延迟恢复特性,并用于评价材料在特定温度范围的抗车辙性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
兰添晖
刘旭
贾存兴
王凌一
张军朝
马国伟
张默
关键词:  道路工程  应变延迟恢复  动态剪切流变(DSR)  沥青胶结料  抗车辙性能    
Abstract: The characteristics of deformation recovery of asphalt binder in medium to high temperature conditions affect the rutting resistance of asphalt mixture directly. The traditional empirical indexes (i. e., penetration, softening point, etc.) and certain mechanical performance indexes based on complex modulus have apparent drawbacks in characterizing the delayed strain recovery properties of asphalt. This work proposed a characterization method using the slope of phase angle curves in frequency domain based on the difference of mechanical behavior described by series Maxwell model and parallel Kelvin model and the frequency response characteristics of viscoelastic mechanical parameters. This study comprehensively analyzed the complex moduli and phase angles of three penetration levels of base asphalt and two types of SBS modified asphalt at 30—70 ℃. It was found that the difference in viscoelastic properties of the different types of asphalt binders can be reflected by the master curve of phase angle in frequency domain more clearly than the master curve of complex modulus. The experiment results showed that the phase angle of SBS modified asphalt presents an increase trend in specific temperature and frequency domains, rather than the monotonically decrease trend with the increase of phase angle presented by the base asphalt. This rule can be used to characterize the delayed strain recovery characte-ristics of asphalt binder and to evaluate the rutting resistance of the material in a specific temperature range.
Key words:  road engineering    delayed strain recovery    dynamic shear rheology (DSR)    asphalt binder    rutting resistance
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  U414  
基金资助: 中央级公益性科研院所基本科研业务费专项资金项目(2020-9074);河北省自然科学基金重点项目(E2019202484);河北省重点研发计划项目(20373803D)
通讯作者:  *张默,博士,河北工业大学土木与交通学院副教授、硕士研究生导师。于2011年和2015年在美国伍斯特理工学院获得硕士和博士学位。研究方向为地质聚合物及其复合材料的合成、反应机理和分子动力学模拟,3D打印的固废胶凝材料的合成和性能以及废弃纤维复合材料在水泥基建筑材料中资源化利用研究等。主持国家自然科学基金、中国博士后基金等多项基金项目。发表论文16篇,其中SCI 11篇,EI 3篇,授权中国发明专利4件、美国发明专利1件。mozhang@hebut.edu.cn   
作者简介:  兰添晖,河北工业大学土木与交通学院硕士研究生,在马国伟教授和张默副教授的指导下进行研究。目前主要研究领域为沥青胶浆流变性能研究与废弃纤维复合材料在沥青混合料中的资源化应用。
引用本文:    
兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
LAN Tianhui, LIU Xu, JIA Cunxing, WANG Lingyi, ZHANG Junzhao, MA Guowei, ZHANG Mo. Delayed Strain Recovery Characterization of Asphalt Binder Based on Dynamic Shear Rheology Test. Materials Reports, 2024, 38(4): 22020138-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22020138  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22020138
1 Zhang J, Zhang X D, Wang W S. Journal of Highway and Transportation Research and Development, 2020, 37(10), 1 (in Chinese).
张俊, 张晓德, 王文珊. 公路交通科技, 2020, 37(10), 1.
2 Zhu Y, Dave E V, Rahbar-Rastegar R, et al. Road Materials and Pavement Design, 2017, 18, 467.
3 Hou Z M. Transpo World, 2021(24), 2 (in Chinese).
侯泽明. 交通世界, 2021(24), 2.
4 Zhang K, Xie L E, Zhang Z Q. Journal of Materials Science and Enginee-ring, 2019, 37(4), 604 (in Chinese).
张苛, 谢玲儿, 张争奇. 材料科学与工程学报, 2019, 37(4), 604.
5 Li S R, Lin Q, Dong S X. Polymer Bulletin, 2008(5), 14 (in Chinese).
李双瑞, 林青, 董声雄. 高分子通报, 2008(5), 14.
6 Meng X Y. Research on evaluation method of anti-rutting performance of asphalt mortar. Master’s Thesis, Dalian University of Technology, China, 2020 (in Chinese).
孟祥宇. 沥青胶浆抗车辙性能评价方法研究. 硕士学位论文, 大连理工大学, 2020.
7 Zhou Z G, Chen G H, Zhang H B, et al. Journal of Changsha University of Science and Technology, 2020, 17(2), 1 (in Chinese).
周志刚, 陈功鸿, 张红波, 等. 长沙理工大学学报, 2020, 17(2), 1.
8 Wang C J, Zhang X Y, Yang P W, et al. China Building Materials Science and Technology, 2020, 29(4), 40 (in Chinese).
王朝军, 张星宇, 杨平文, 等. 中国建材科技, 2020, 29(4), 40.
9 Bahia H U, Anderson D A. Journal of the Transportation Research Board, 1995, 1488, 32.
10 Li X C. In:the 7th Annual conference of Maintenance and Management Branch of China Highway Society. Xi’an, 2017, pp. 394 (in Chinese).
李笑尘. 中国公路学会养护与管理分会第七届学术年会. 西安, 2017, pp. 394.
11 AASHTO. T315-08, Washington, DC, 2008.
12 Shenoy A. Applied Rheology, 2004, 14(6), 303.
13 Delgadillo R, Cho D W, Bahia H. Journal of the Transportation Research Board, 2006, 1962(1), 2.
14 AASHTO. T350-14, Washington, DC, 2014.
15 D’angelo J A. Road Materials and Pavement Design, 2009, 10, 61.
16 D’angelo J, Kluttz R, Dongre R N, et al. Journal of the Association of Asphalt Paving Technologists, 2007, 76, 123.
17 Delgadillo R, Bahia H U, Lakes R. Materials and Structures, 2012, 45(3), 457.
18 Zhao K C, Wang Y H, Yang Z, et al. Journal of Highway and Transportation Research and Development, 2021, 38(5), 10 (in Chinese).
赵可成, 王予红, 杨震, 等. 公路交通科技, 2021, 38(5), 10.
19 Zhao W H, Xie X B, Li G H, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 322 (in Chinese).
赵文辉, 谢祥兵, 李广慧, 等. 硅酸盐通报, 2020, 39(11), 322.
20 Lin W J. Research on the performances of crumb rubber composite modified asphalt based on rheological properties. Master’s Thesis, South China University of Technology,China, 2020 (in Chinese).
林伟杰. 基于流变特性的橡胶复合改性沥青性能研究. 硕士学位论文, 华南理工大学, 2020.
21 Schwartz C, Gibson N, Schapery R. Journal of the Transportation Research Board, 2002, 1789, 101.
22 Behnood A, Olek J. Construction and Building Materials, 2017, 151, 464.
23 Fan S P, Zhu H Z, Zhong W M. Journal of Building Materials, 2021, 25(3), 320 (in Chinese).
范世平, 朱洪洲, 钟伟明. 建筑材料学报, 2021, 25(3), 320.
24 Yu Q, Zhao B, Yi K, et al. Journal of Wuhan University of Technology, 2021(5), 920 (in Chinese).
余琦, 赵兵, 易凯, 等. 武汉理工大学学报, 2021(5), 920.
25 Yang T Q, Luo W B, Xu P, et al. Viscoelastic theory and application, Science Press, China, 2004, pp.33 (in Chinese).
杨挺青, 罗文波, 徐平, 等. 黏弹性理论与应用, 科学出版社, 2004, pp.33.
26 Liu X, Zhang M, Shao L, et al. Construction and Building Materials, 2018, 190, 495.
27 Airey G D. Rheological characteristics of polymer modified and aged bitumens. Ph. D. Thesis, University of Nottingham, UK, 1997.
28 Hervé D B, François O, Cédric S, et al. Road Materials and Pavement Design, 2004, 5, 163.
29 Xu W, Pan M J, Zhang K, et al. Journal of Wuhan University of Technology, 2021, 45(5), 939 (in Chinese).
徐文, 潘梅娟, 张恺, 等. 武汉理工大学学报, 2021, 45(5), 939.
30 Zhou H Y, Zhang L. Journal of Highway and Transportation Research and Development, 2021, 38(1), 10 (in Chinese).
周焕云, 张磊. 公路交通科技, 2021, 38(1), 10.
31 Mao S P, Huang H H, Bo P, et al. Science Technology and Engineering, 2021, 21(13), 5518 (in Chinese).
毛三鹏, 黄宏海, 薄鹏, 等. 科学技术与工程, 2021, 21(13), 5518.
32 Gao Y. Synthetic Materials Aging and Application, 2021, 50(2), 67 (in Chinese).
高运. 合成材料老化与应用, 2021, 50(2), 67.
33 Cheng P F, Tong T Y. Journal of Wuhan University, 2021, 54(10), 927(in Chinese).
程培峰, 佟天宇. 武汉大学学报, 2021, 54(10), 927.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[5] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[6] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[7] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[8] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[9] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[10] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[11] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[12] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[13] 王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
[14] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
[15] 赵晓康, 张久鹏, 胡勤石, 裴建中, 程科, 张柳. 长余辉水性道面标线涂料的制备与路用性能[J]. 材料导报, 2024, 38(15): 23020088-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed