Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 79-84    https://doi.org/10.11896/j.issn.1005-023X.2017.022.016
  材料研究 |
搅拌摩擦焊接Mg-6Al-1Sn合金组织与性能研究*
叶俊华1,汤爱涛1,2,马仕达1,陈巧旺1,王玉容1,徐安莲1
1 重庆大学材料科学与工程学院,重庆 400045;
2 重庆大学国家镁合金材料工程技术研究中心,重庆 400044
Microstructure and Properties of Mg-6Al-1Sn Alloy by Friction Stir Welding
YE Junhua1, TANG Aitao1, 2, MA Shida1, CHEN Qiaowang1, WANG Yurong1, XU Anlian1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045;
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044
下载:  全 文 ( PDF ) ( 770KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对搅拌摩擦焊Mg-6Al-1Sn (AT61)合金板材在不同的焊接工艺参数下的组织与性能进行了研究。研究结果表明,在旋转速度为 1 200 r/min时,焊接速度为60~180 mm/min及焊速为180 mm/min时,转速为1 200~1 600 r/min范围内都能实现良好连接,接头最大抗拉强度系数达到母材的88%,且焊核区的析氢速率低于母材,但电化学性能有所降低。母材中的第二相是Al8Mn5, 没有检测到Mg2Sn相,在不同焊接工艺参数下接头组织与母材相比,第二相的类型不变,第二相的分布由条状变为颗粒状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶俊华
汤爱涛
马仕达
陈巧旺
王玉容
徐安莲
关键词:  AT61镁合金  搅拌摩擦焊  组织  性能    
Abstract: Mg-6Al-1Sn (AT61) magnesium alloy plates were successfully friction stir welded (FSW). The effect of different parameters on microstructure and properties were investigated. The results showed that the sound welded joints were obtained at the constant rotational rate of 1 200 r/min when the welding speed ranged from 60—180 mm/min and at the constant welding speed of 180 mm/min when the rotational rates ranged from 1 200—1 600 r/min, the best joint efficiency (i.e., a ratio of the UTS of joint to the UTS of BM) was 88%, and the hydrogen rate in nugget zone (NZ) was lower than base material (BM), but the electrochemistry performance was reduced. It was found that only Al8Mn5 phase was observed in BM, no Mg2Sn phase was detected. Compared with BM in microstructure, the type of secondary precipitates were insensitive to different welding parameters, and the distribution of secondary precipitates were transformed from strips into particles.
Key words:  AT61 magnesium alloy    friction stir welding    microstructure    properties
                    发布日期:  2018-05-08
ZTFLH:  TG146.2+2  
  TG113.26+3  
基金资助: *国家重点研发项目(2016YFB0301101);国家自然科学基金(51474043);重庆市教委科技成果转化项目(KJZH14101)
通讯作者:  汤爱涛,女,1963年生,博士,教授,研究方向为轻合金及其计算机模拟E-mail:tat@cqu.edu.cn   
作者简介:  叶俊华:男,1991年生,硕士研究生,研究方向为镁合金的搅拌摩擦焊E-mail:20140902082@cqu.edu.cn
引用本文:    
叶俊华,汤爱涛,马仕达,陈巧旺,王玉容,徐安莲. 搅拌摩擦焊接Mg-6Al-1Sn合金组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 79-84.
YE Junhua, TANG Aitao, MA Shida, CHEN Qiaowang, WANG Yurong, XU Anlian. Microstructure and Properties of Mg-6Al-1Sn Alloy by Friction Stir Welding. Materials Reports, 2017, 31(22): 79-84.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.016  或          http://www.mater-rep.com/CN/Y2017/V31/I22/79
1 Chowdhury S M, Chen D L, Bhole S D, et al. Effect of pin tool thread orientation on fatigue strength of friction stir welded AZ31B-H24 Mg butt joints[J]. Procedia Eng, 2010,2(1):825.
2 Luo A A. Magnesium casting technology for structural applications[J]. J Magnesium Alloys, 2013,1(1):2.
3 Yang J, Xiao B L, Wang D, et al. Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg-3Al-1Zn alloy[J]. Mater Sci Eng A, 2010,527(3):708.
4 Ren Shurong, Ma Zongyi, Chen Liqing. Research status and prospect of friction stir welding and friction stir processing[J]. Mater Rev, 2007,21(1):86(in Chinese).
任淑荣,马宗义,陈礼清. 搅拌摩擦焊接及其加工研究现状与展望[J]. 材料导报, 2007,21(1):86.
5 Afrin N, Chen D L, Cao X, et al. Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy[J]. Mater Sci Eng A, 2008,472(1-2):179.
6 Yang Suyuan, Zhang Baolei. Microstructures and mechanical properties of thick AZ31 magnesium alloy welded joint by friction stir welding[J]. Trans China Weld Inst, 2009,30(5):1(in Chinese).
杨素媛, 张保垒. 厚板AZ31镁合金搅拌摩擦焊焊接接头的组织与性能[J]. 焊接学报, 2009,30(5):1.
7 Zhang Hua, Wu Lin, Lin Sanbao, et al. Friction stir welding of AZ31 magnesium alloy[J]. Chin J Mech Eng, 2004,40(8):123(in Chinese).
张华,吴林,林三宝,等. AZ31镁合金搅拌摩擦焊研究[J]. 机械工程材料, 2004,40(8):123.
8 Xie G M, Ma Z Y, Geng L. Effect of microstructural evolution on mechanical properties of friction stir welded ZK60 alloy[J]. Mater Sci Eng A, 2008,486(1-2):49.
9 Xie G M, Ma Z Y, Geng L, et al. Microstructural evolution and mechanical properties of friction stir welded Mg-Zn-Y-Zr alloy[J]. Mater Sci Eng A, 2007,471(1-2):63.
10 Luo D, Wang H Y, Zhang L, et al. Microstructure evolution and tensile properties of hot rolled Mg-6Al-3Sn alloy sheet at elevated temperatures[J]. Mater Sci Eng A, 2015,643:149.
11 She J, Pan F S, Hu H H, et al. Microstructures and mechanical properties of as-extruded Mg-5Sn-1Zn-xAl(x=1, 3 and 5) alloys[J]. Progress Nat Sci: Mater Int, 2015,25(4):267.
12 She J, Pan F, Zhang J Y, et al. Microstructure and mechanical properties of Mg-Al-Sn extruded alloys[J]. J Alloys Compd, 2016,657:893.
13 Wang H Y, Zhang N, Wang C, et al. First-principles study of the generalized stacking fault energy in Mg-3Al-3Sn alloy[J]. Scripta Mater, 2011,65(8):723.
14 Pan F S, Xu A L, Deng D A, et al. Effects of friction stir welding on microstructure and mechanical properties of magnesium alloy Mg-5Al-3Sn[J]. Mater Des, 2016,110:266.
15 Pan F S, Xu A L, Ye J H, et al. Effects of rotation rate on microstructure and mechanical properties of friction stir-welded Mg-5Al-1Sn magnesium alloy[J]. Int J Adv Manuf Technol, 2016, doi:10.1007/s00170-016-9752-4.
16 Xu A L, Pan F S, Jiang X Q, et al. Microstructure and properties of friction stir welded Mg-1Al-xSn-0.3Mn magnesium alloys[J]. Mater Sci Forum, 2015,816:349.
17 Gou J, Tang A T, Pan F S, et al. Influence of Sn addition on mechanical properties of gas tungsten arc welded AM60 Mg alloy sheets[J]. Trans Nonferrous Met Soc China, 2016,26(8):2051.
18 Kumar K, Kailas S V. The role of friction stir welding tool on material flow and weld formation[J]. Mater Sci Eng A, 2008,485(1-2):367.
19 Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Mater Sci Eng R: Rep, 2005,50(1-2):1.
20 Albakri A N, Mansoor B, Nassar H, et al. Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—A numerical and experimental investigation[J]. J Mater Processing Technol, 2013,213(2):279.
21 Commin L, Dumont M, Masse J E, et al. Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters[J]. Acta Mater, 2009,57(2):326.
22 Luo Chuanhong, Peng Weiping, Guo Lijie, et al. Performance of aluminum alloy 2219 joints welded by friction stir welding[J]. J Chongqing University of Technology (Natural Science), 2014(10):38(in chinese).
罗传红,彭卫平,郭立杰,等. 2219高强铝合金搅拌摩擦焊接头组织和性能分析[J]. 重庆理工大学学报(自然科学版), 2014(10):38.
23 Woo W, Choo H, Brown D W, et al. Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy[J]. Scripta Mater, 2006,54(11):1859.
24 Commin L, Dumont M, Rotinat R, et al. Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds[J]. Mater Sci Eng A, 2012,551:288.
25 Park S H C, Sato Y S, Kokawa H. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test[J]. Scripta Mater, 2003,49(2):161.
26 Cao X, Jahazi M. Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy[J]. Mater Des, 2009,30(6):2033.
27Zeng R C, Zhang J, Huang W J, et al. Review of studies on corrosion of magnesium alloys[J]. Trans Nonferrous Met Soc China, 2006,16(s1):S763.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[3] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[4] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[5] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[6] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[7] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[8] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[9] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[10] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[11] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[12] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[13] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[14] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[15] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed