Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 79-84    https://doi.org/10.11896/j.issn.1005-023X.2017.022.016
  材料研究 |
搅拌摩擦焊接Mg-6Al-1Sn合金组织与性能研究*
叶俊华1,汤爱涛1,2,马仕达1,陈巧旺1,王玉容1,徐安莲1
1 重庆大学材料科学与工程学院,重庆 400045;
2 重庆大学国家镁合金材料工程技术研究中心,重庆 400044
Microstructure and Properties of Mg-6Al-1Sn Alloy by Friction Stir Welding
YE Junhua1, TANG Aitao1, 2, MA Shida1, CHEN Qiaowang1, WANG Yurong1, XU Anlian1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045;
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044
下载:  全 文 ( PDF ) ( 770KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对搅拌摩擦焊Mg-6Al-1Sn (AT61)合金板材在不同的焊接工艺参数下的组织与性能进行了研究。研究结果表明,在旋转速度为 1 200 r/min时,焊接速度为60~180 mm/min及焊速为180 mm/min时,转速为1 200~1 600 r/min范围内都能实现良好连接,接头最大抗拉强度系数达到母材的88%,且焊核区的析氢速率低于母材,但电化学性能有所降低。母材中的第二相是Al8Mn5, 没有检测到Mg2Sn相,在不同焊接工艺参数下接头组织与母材相比,第二相的类型不变,第二相的分布由条状变为颗粒状。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶俊华
汤爱涛
马仕达
陈巧旺
王玉容
徐安莲
关键词:  AT61镁合金  搅拌摩擦焊  组织  性能    
Abstract: Mg-6Al-1Sn (AT61) magnesium alloy plates were successfully friction stir welded (FSW). The effect of different parameters on microstructure and properties were investigated. The results showed that the sound welded joints were obtained at the constant rotational rate of 1 200 r/min when the welding speed ranged from 60—180 mm/min and at the constant welding speed of 180 mm/min when the rotational rates ranged from 1 200—1 600 r/min, the best joint efficiency (i.e., a ratio of the UTS of joint to the UTS of BM) was 88%, and the hydrogen rate in nugget zone (NZ) was lower than base material (BM), but the electrochemistry performance was reduced. It was found that only Al8Mn5 phase was observed in BM, no Mg2Sn phase was detected. Compared with BM in microstructure, the type of secondary precipitates were insensitive to different welding parameters, and the distribution of secondary precipitates were transformed from strips into particles.
Key words:  AT61 magnesium alloy    friction stir welding    microstructure    properties
发布日期:  2018-05-08
ZTFLH:  TG146.2+2  
  TG113.26+3  
基金资助: *国家重点研发项目(2016YFB0301101);国家自然科学基金(51474043);重庆市教委科技成果转化项目(KJZH14101)
通讯作者:  汤爱涛,女,1963年生,博士,教授,研究方向为轻合金及其计算机模拟E-mail:tat@cqu.edu.cn   
作者简介:  叶俊华:男,1991年生,硕士研究生,研究方向为镁合金的搅拌摩擦焊E-mail:20140902082@cqu.edu.cn
引用本文:    
叶俊华,汤爱涛,马仕达,陈巧旺,王玉容,徐安莲. 搅拌摩擦焊接Mg-6Al-1Sn合金组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 79-84.
YE Junhua, TANG Aitao, MA Shida, CHEN Qiaowang, WANG Yurong, XU Anlian. Microstructure and Properties of Mg-6Al-1Sn Alloy by Friction Stir Welding. Materials Reports, 2017, 31(22): 79-84.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.016  或          https://www.mater-rep.com/CN/Y2017/V31/I22/79
1 Chowdhury S M, Chen D L, Bhole S D, et al. Effect of pin tool thread orientation on fatigue strength of friction stir welded AZ31B-H24 Mg butt joints[J]. Procedia Eng, 2010,2(1):825.
2 Luo A A. Magnesium casting technology for structural applications[J]. J Magnesium Alloys, 2013,1(1):2.
3 Yang J, Xiao B L, Wang D, et al. Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg-3Al-1Zn alloy[J]. Mater Sci Eng A, 2010,527(3):708.
4 Ren Shurong, Ma Zongyi, Chen Liqing. Research status and prospect of friction stir welding and friction stir processing[J]. Mater Rev, 2007,21(1):86(in Chinese).
任淑荣,马宗义,陈礼清. 搅拌摩擦焊接及其加工研究现状与展望[J]. 材料导报, 2007,21(1):86.
5 Afrin N, Chen D L, Cao X, et al. Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy[J]. Mater Sci Eng A, 2008,472(1-2):179.
6 Yang Suyuan, Zhang Baolei. Microstructures and mechanical properties of thick AZ31 magnesium alloy welded joint by friction stir welding[J]. Trans China Weld Inst, 2009,30(5):1(in Chinese).
杨素媛, 张保垒. 厚板AZ31镁合金搅拌摩擦焊焊接接头的组织与性能[J]. 焊接学报, 2009,30(5):1.
7 Zhang Hua, Wu Lin, Lin Sanbao, et al. Friction stir welding of AZ31 magnesium alloy[J]. Chin J Mech Eng, 2004,40(8):123(in Chinese).
张华,吴林,林三宝,等. AZ31镁合金搅拌摩擦焊研究[J]. 机械工程材料, 2004,40(8):123.
8 Xie G M, Ma Z Y, Geng L. Effect of microstructural evolution on mechanical properties of friction stir welded ZK60 alloy[J]. Mater Sci Eng A, 2008,486(1-2):49.
9 Xie G M, Ma Z Y, Geng L, et al. Microstructural evolution and mechanical properties of friction stir welded Mg-Zn-Y-Zr alloy[J]. Mater Sci Eng A, 2007,471(1-2):63.
10 Luo D, Wang H Y, Zhang L, et al. Microstructure evolution and tensile properties of hot rolled Mg-6Al-3Sn alloy sheet at elevated temperatures[J]. Mater Sci Eng A, 2015,643:149.
11 She J, Pan F S, Hu H H, et al. Microstructures and mechanical properties of as-extruded Mg-5Sn-1Zn-xAl(x=1, 3 and 5) alloys[J]. Progress Nat Sci: Mater Int, 2015,25(4):267.
12 She J, Pan F, Zhang J Y, et al. Microstructure and mechanical properties of Mg-Al-Sn extruded alloys[J]. J Alloys Compd, 2016,657:893.
13 Wang H Y, Zhang N, Wang C, et al. First-principles study of the generalized stacking fault energy in Mg-3Al-3Sn alloy[J]. Scripta Mater, 2011,65(8):723.
14 Pan F S, Xu A L, Deng D A, et al. Effects of friction stir welding on microstructure and mechanical properties of magnesium alloy Mg-5Al-3Sn[J]. Mater Des, 2016,110:266.
15 Pan F S, Xu A L, Ye J H, et al. Effects of rotation rate on microstructure and mechanical properties of friction stir-welded Mg-5Al-1Sn magnesium alloy[J]. Int J Adv Manuf Technol, 2016, doi:10.1007/s00170-016-9752-4.
16 Xu A L, Pan F S, Jiang X Q, et al. Microstructure and properties of friction stir welded Mg-1Al-xSn-0.3Mn magnesium alloys[J]. Mater Sci Forum, 2015,816:349.
17 Gou J, Tang A T, Pan F S, et al. Influence of Sn addition on mechanical properties of gas tungsten arc welded AM60 Mg alloy sheets[J]. Trans Nonferrous Met Soc China, 2016,26(8):2051.
18 Kumar K, Kailas S V. The role of friction stir welding tool on material flow and weld formation[J]. Mater Sci Eng A, 2008,485(1-2):367.
19 Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Mater Sci Eng R: Rep, 2005,50(1-2):1.
20 Albakri A N, Mansoor B, Nassar H, et al. Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—A numerical and experimental investigation[J]. J Mater Processing Technol, 2013,213(2):279.
21 Commin L, Dumont M, Masse J E, et al. Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters[J]. Acta Mater, 2009,57(2):326.
22 Luo Chuanhong, Peng Weiping, Guo Lijie, et al. Performance of aluminum alloy 2219 joints welded by friction stir welding[J]. J Chongqing University of Technology (Natural Science), 2014(10):38(in chinese).
罗传红,彭卫平,郭立杰,等. 2219高强铝合金搅拌摩擦焊接头组织和性能分析[J]. 重庆理工大学学报(自然科学版), 2014(10):38.
23 Woo W, Choo H, Brown D W, et al. Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy[J]. Scripta Mater, 2006,54(11):1859.
24 Commin L, Dumont M, Rotinat R, et al. Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds[J]. Mater Sci Eng A, 2012,551:288.
25 Park S H C, Sato Y S, Kokawa H. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test[J]. Scripta Mater, 2003,49(2):161.
26 Cao X, Jahazi M. Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy[J]. Mater Des, 2009,30(6):2033.
27Zeng R C, Zhang J, Huang W J, et al. Review of studies on corrosion of magnesium alloys[J]. Trans Nonferrous Met Soc China, 2006,16(s1):S763.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[5] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[10] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[13] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[14] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[15] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed