Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 128-134    https://doi.org/10.11896/j.issn.1005-023X.2018.01.016
     材料综述 |
适用于机器人焊接的搅拌摩擦焊技术及工艺研究现状
张昊1(),黄永德1(),郭跃2,陆青松3
1 南昌航空大学航空制造工程学院,轻合金加工科学与技术国防重点学科实验室,南昌 330063
2 昆山华恒焊接股份有限公司,昆山 215300
3 浙江银轮机械股份有限公司,台州 317200
Technological and Process Advances in Robotic Friction Stir Welding
Hao ZHANG1(),Yongde HUANG1(),Yue GUO2,Qingsong LU3
1 National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063
2 Kunshan Huaheng Welding Co., Ltd., Kunshan 215300
3 Zhejiang Yinlun Machinery Co., Ltd., Taizhou 317200
下载:  全 文 ( PDF ) ( 1027KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

集绿色化与智能化于一体的机器人搅拌摩擦焊技术具有极高的焊接柔性,在工业生产中受到广泛重视与应用。从减小搅拌摩擦焊接过程中的轴向力方面入手,对一些低轴向力且适用于机器人搅拌摩擦焊的技术方法进行了综述,同时,对能够进一步降低搅拌摩擦焊过程中轴向力的搅拌摩擦焊工艺进行了分析,并对机器人搅拌摩擦焊的发展进行了展望,以期拓宽机器人搅拌摩擦焊的应用范围。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昊
黄永德
郭跃
陆青松
关键词:  机器人搅拌摩擦焊  柔性  工艺  现状    
Abstract: 

The technology of robot friction stir welding with high welding flexibility, featured as green manufacturing and intellectualization, has been widely noticed and used in industrial production. In this paper, to broaden the scope of robotic friction stir welding, with the concern on reducing the axial force of friction stir welding process, some technical methods with low axial force and being applicable to the robotic friction stir welding are summarized. Moreover, the friction stir welding processes, which can further reduced the axial force, are analyzed, and the development prospects of robotic friction stir welding are proposed.

Key words:  robotic friction stir welding    flexibility    processes    present situation
               出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TG47  
基金资助: 轻合金加工科学与技术国防重点学科实验室开放基金(gf201601004);江西省2016年度研究生创新专项资金(YC2016-S345)
作者简介:  张昊:男,1990年生,硕士研究生,主要从事搅拌摩擦焊的研究 E-mail: zhac3257@163.com
引用本文:    
张昊,黄永德,郭跃,陆青松. 适用于机器人焊接的搅拌摩擦焊技术及工艺研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 128-134.
Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding. Materials Reports, 2018, 32(1): 128-134.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.016  或          http://www.mater-rep.com/CN/Y2018/V32/I1/128
  
  
  
  
  
[1] Forcellese A, Martarelli M, Simoncini M . Effect of process parameters on vertical forces and temperatures developed during friction stir welding of magnesium alloys[J]. The International Journal of Advanced Manufacturing Technology, 2016,85(1):595.
[2] Luan G H, Guo D L . Development and application of friction stir welding technology in China[J].Aeronautical Manufacturing Technology, 2014(17):70(in Chinese).
[2] 栾国红, 郭德伦 . 搅拌摩擦焊技术在中国的发展和推广应用[J]. 航空制造技术, 2014(17):70.
[3] Guillo M, Dubourg L . Impact and improvement of tool deviation in friction stir welding: Weld quality and real-time compensation on an industrial robot[J]. Robotics and Computer-integrated Manufac-turing, 2016,39(5):22.
[4] Dong C L, Li J Z, Luan G H . Development of robotic friction stir welding technology[J]. Aeronautical Manufacturing Technology, 2014(17):76(in Chinese).
[4] 董春林, 李继忠, 栾国红 . 机器人搅拌摩擦焊发展现状与趋势[J].航空制造技术, 2014(17):76.
[5] Mendes N, Neto P, Loureiro A , et al. Machines and control systems for friction stir welding: A review[J]. Materials and Design, 2016,90:256.
[6] Mendes N, Neto P, Loureiro A. Robotic friction stir welding aided by hybrid force/motion control [C]∥Emerging Technology and Factory Automation. IEEE, 2015: 1.
[7] Zhang H, Zhang Z, Chen J . The finite element simulation of the friction stir welding process[J]. Materials Science and Engineering A, 2005,403(1):340.
[8] Zhang Z K . The measurement and coupling key problems study of multifield during friction stir welding[D]. Lanzhou: Lanzhou University of Technology, 2009(in Chinese).
[8] 张忠科 . 搅拌摩擦焊接过程的多场检测及耦合关键问题研究[D]. 兰州:兰州理工大学, 2009.
[9] Astarita A, Squillace A, Carrino L . Experimental study of the forces acting on the tool in the friction stir welding of AA 2024 T3 sheets[J]. Journal of Materials Engineering and Performance, 2014,23(10):3754.
[10] BackerJ D, Christiansson A, Oqueka J , et al. Investigation of path compensation methods for robotic friction stir welding[J]. Industrial Robot An International Journal, 2013,39(6):601.
[11] PalpacelliM, Callegari M, Carbonari L , et al. Theoretical and experimental analysis of a hybrid industrial robot used for friction stir welding[J]. International Journal of Mechatronics and Manufacturing Systems, 2015,8(5):258.
[12] GibsonB T, Lammlein D H, Prater T J , et al. Friction stir welding: Process, automation, and control[J]. Journal of Manufacturing Processes, 2014,16(1):56.
[13] WanjaraP, Monsarrat B, Larose S . Gap tolerance allowance and robotic operational window for friction stir butt welding of AA6061[J]. Journal of Materials Processing Technology, 2013,213:631.
[14] LonghurstW R, Strauss A M, Cook G E . The identification of the key enablers for force control of robotic friction stir welding[J]. Journal of Manufacturing Science and Engineering, 2011,133:255.
[15] WangK, Leonard F, Abba G . Dynamic model identification of axial force in robotic friction stir welding[J]. Ifac Papers online, 2015,48(3):1936.
[16] FehrenbacherA, Smith C B, Duffie N A , et al. Combined temperature and force control for robotic friction stir welding[J]. Journal of Manufacturing Science and Engineering, 2014,136(2):1.
[17] Zhou L, Zhou W L, Du Z Y , et al. Research status of friction stir spot welding technology[J]. Aerospace Manufacturing Technology, 2014(5):1(in Chinese).
[17] 周利, 周炜璐, 杜正勇 , 等. 搅拌摩擦点焊技术研究现状[J].航天制造技术, 2014(5):1.
[18] KimY P, Kim C H, Kim Y G , et al. Trends of technology development of friction stir welding machine[J]. Journal of Welding and Joining, 2016,34(3):1.
[19] Zhang S, Qiao F B, Liu Y L , et al. The analysis of kinematic simulation of friction stir spot welding robot based on ADAMS Electric Welding Machine, 2012,42(6):113(in Chinese).
[19] 张松, 乔凤斌, 刘玉来 , 等. 基于ADAMS的搅拌摩擦点焊机器人动力学仿真分析[J]. 电焊机, 2012,42(6):113.
[20] Buffa G, Fratini L, , Towards tool path numerical simulation in modified friction stir spot welding processes[J].Advanced Materials Research, 2009, 83- 86:1220.
[21] FuT, Li W Y, Yang X W , et al. State-of-the-art of friction stir spot welding Journal of Materials Engineering, 2015,43(4):102(in Chinese).
[21] 傅田, 李文亚, 杨夏炜 , 等. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015,43(4):102.
[22] FujimotoM, Okada H, Kamimuki K . Friction stir spot welding application on aerospace industries[J]. Journal of the Japan Welding Society, 2011,80(8):668.
[23] MilesM P, Feng Z, Kohkonen K , et al. Spot joining of AA 5754 and high strength steel sheets by consumable bit[J]. Science and Technology of Welding and Joining, 2010,15(4):325.
[24] ZhangG F, Jiao W M, Zhang J X . Filling friction stir weld keyhole using pin free tool and T shaped filler bit[J]. Science and Technology of Welding and Joining, 2014,19(2):98.
[25] MilesM, Hong S T, Woodward C , et al. Spot welding of aluminum and cast iron by friction bit joining[J]. International Journal of Precision Engineering & Manufacturing, 2013,14(6):1003.
[26] SkinnerM, Edwards R L . Improvements to the FSW process using the self-reacting technology[J]. Materials Science Forum, 2003,426:2849.
[27] ZhaoD S, Ma Z B, Luan G H. . Basic consideration on status and trends of friction stir welding technology[J].Welding and Joining, 2013(12):16(in Chinese).
[27] 赵东升, 马正斌, 栾国红 . 搅拌摩擦焊技术发展现状与趋势[J].焊接, 2013(12):16.
[28] Liu J, Deng G, Han F W. . et al. Development and application of bobbin tool friction stir welding to manufacturing of aluminum alloy train body[J].Welding and Joining, 2015(1):17(in Chinese).
[28] 刘杰, 邓钢, 韩凤武 , 等. 双轴肩搅拌摩擦焊技术在铝合金车体制造中的应用发展[J]. 焊接, 2015(1):17.
[29] ZhangH J, Wang M, Zhang J B , et al. Research status and trends on low-load friction stir welding process Welding and Joining, 2014,18(4):17(in Chinese).
[29] 张会杰, 王敏, 张景宝 , 等. 低载荷搅拌摩擦焊工艺研究现状及趋势[J]. 焊接, 2014,18(4):17.
[30] LiuH J, Li J Q, Duan W J . Progress in the stationary shoulder friction stir welding Transaction of China Welding Institution, 2012,33(5):108(in Chinese).
[30] 刘会杰, 李金全, 段卫军 . 静止轴肩搅拌摩擦焊的研究进展[J]. 焊接学报, 2012,33(5):108.
[31] WuH, Chen Y C, Strong D , et al. Stationary shoulder FSW for joining high strength aluminum alloys[J]. Journal of Materials Processing Technology, 2015,221:187.
[32] WidenerC A, Talia J E, Tweedy B M, et al. High-rotational speed friction stir welding with a fixed shoulder [C]∥6th International Firction Stir Welding Sympoium. Saint-Sauveur, 2006: 1.
[33] LammleinD H, Delapp D R, Fleming P A , et al. The application of shoulderless conical tools in friction stir welding: An experimental and theoretical study[J]. Materials and Design, 2009,30:4012.
[34] WanL, Huang Y, Guo W , et al. Mechanical properties and microstructure of 6082-T6 aluminum alloy joints by self-support friction stir welding[J]. Journal of Materials Science and Technology, 2014,30(12):1243.
[35] LiJ Q, Liu H J . Characteristics of the reverse dual-rotation friction stir welding conducted on 2219-T6 aluminum alloy[J]. Materials and Design, 2013,45(6):148.
[36] BresA, Monsarrat B, Dubourg L , et al. Simulation of friction stir welding using industrial robots[J]. Industrial Robot, 2010,37:36.
[37] DawoodH I, Mohammed K S, Rahmat A , et al. Effect of small tool pin profiles on microstructures and mechanical properties of 6061 aluminum alloy by friction stir welding[J]. Transactions of Nonferrous Metals Society of China, 2015,25(9):2856.
[38] LonghurstW R . Force control of friction stir welding[D]. Vanderbilt University, 2009.
[39] HattinghD G, Blignault C, Niekerk T I V , et al. Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool[J]. Journal of Materials Processing Technology, 2008,203(1-3):46.
[40] ColegroveP A, Shercliff H R . Development of trivex friction stir welding tool Part 1—Two-dimensional flow modelling and experimental validation[J]. Science and Technology of Welding and Joining, 2004,9(4):352.
[41] WangD Y,Feng J C, Wang P F, . Research status and trend of rotational tool used for friction stir welding[J]. Welding and Joining, 2004(6):6(in Chinese).
[41] 王大勇, 冯吉才, 王攀峰 . 搅拌摩擦焊用搅拌头研究现状与发展趋势[J]. 焊接, 2004(6):6.
[42] SoundararajanV, Valant M, Kovacevic R . An overview of R&D work in friction stir welding at SMU[J]. Metalurgija, 2006,12(4):275.
[43] KumarB A, Murugan N . Optimization of friction stir welding process parameters to maximize tensile strength of stir cast AA6061-T6/AlNp composite[J]. Materials and Design, 2014,57(5):383.
[44] MendesN, Loureiro A, Martins C , et al. Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds[J]. Materials and Design, 2014,58(6):457.
[45] HusseinS A, Tahir A S M, Izamshah R . Generated forces and heat during the critical stages of friction stir welding and processing[J]. Journal of Mechanical Science and Technology, 2015,29(10):4319.
[46] LonghurstW R, Strauss A M, Cook G E , et al. Investigation of force-controlled friction stir welding for manufacturing and automation[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2010,224(6):937.
[47] CookG E, Crawford R, Clark D E , et al. Robotic friction stir welding[J]. Industrial Robot, 2004,31(1):55.
[48] CampanelliS L, Casalino G, Casavola C , et al. Analysis and comparison of friction stir welding and laser assisted friction stir welding of aluminum alloy[J]. Materials, 2013,6(12):5923.
[49] AlvarezA I, Garcia M, Pena G , et al. Evaluation of an induction-assisted friction stir welding technique for super duplex stainless steels[J]. Surface and Interface Analysis, 2014,46(10):892.
[50] YaduwanshiD K, Bag S, Pal S . Effect of preheating in hybrid friction stir welding of aluminum alloy[J]. Journal of Materials Engineering and Performance, 2014,23(10):3794.
[51] LiuX C, Wu C S, . Research progress of secondary energy assisted friction stir welding[J].Journal of Netshape Forming Engineering, 2015(5):13(in Chinese).
[51] 刘小超, 武传松 . 外加能量辅助搅拌摩擦焊技术的研究进展[J]. 精密成形工程, 2015(5):13.
[52] PadhyG K, Wu C S, Gao S . Auxiliary energy assisted friction stir welding-status review[J]. Science and Technology of Welding and Joining, 2015,20(8):631.
[1] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[2] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[3] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[6] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[7] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[8] 左迎峰, 李萍, 屠茹茹, 赵星, 袁光明, 吴义强. 基于响应曲面法优化酸解氧化制备高醛基含量的双醛淀粉的工艺条件[J]. 材料导报, 2019, 33(2): 335-341.
[9] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[10] 李萍,左迎峰,吴义强,赵星,王健. 秸秆人造板制造及应用研究进展[J]. 材料导报, 2019, 33(15): 2624-2630.
[11] 李兴,邓立生,何兆红,黄宏宇. 渗透汽化分离水中有机物的研究进展[J]. 材料导报, 2019, 33(15): 2610-2616.
[12] 侯明, 郭胜惠, 高冀芸, 杨黎, 王梁, 叶小磊. 预合金结合剂成分及烧结工艺对金刚石工具性能的影响[J]. 材料导报, 2019, 33(14): 2403-2407.
[13] 高丽华, 冀晓鹃, 侯伟骜, 卢晓亮, 章德铭. 等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J]. 材料导报, 2019, 33(12): 1963-1968.
[14] 周金华, 申勇峰. 低活化铁素体/马氏体耐热钢中MX型碳氮化物强化研究进展[J]. 材料导报, 2019, 33(11): 1793-1800.
[15] 许君君, 黄金华, 盛伟, 王肇肇, 赵文凯, 李佳, 杨晔, 万冬云, 宋伟杰. 超薄金属透明导电膜及其应用研究进展[J]. 材料导报, 2019, 33(11): 1875-1881.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed