Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3612-3617    https://doi.org/10.11896/j.issn.1005-023X.2018.20.021
  金属与金属基复合材料 |
搅拌针端部挤压区内塑性金属的流动行为
毛育青1,2, 柯黎明2, 江周明2
1 南昌航空大学无损检测技术教育部重点实验室, 南昌 330063;
2 南昌航空大学轻合金加工科学与技术国防重点学科实验室, 南昌 330063;
Flow Behavior of Plastic Metal in Extruded Zone Around Tool Pin-tip
MAO Yuqing1,2, KE Liming 2, JIANG Zhouming 2
1 Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063;
2 National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063;
下载:  全 文 ( PDF ) ( 4257KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以0.02 mm厚的铜箔作为标示材料、1 mm和2 mm厚的2024铝合金薄板作为基材,采用不同的叠加方式组成叠层并进行搅拌摩擦焊接(Friction stir welding, FSW)试验,分析搅拌针端部挤压区塑性金属的流动行为及其对焊缝成形的影响。结果表明,在FSW焊接过程中,焊缝上部被塑化的金属不断地沿着搅拌针螺纹旋向往搅拌针端部迁移、长大,形成挤压区。此挤压区由位于搅拌针两侧的扩展区和位于搅拌针端面下方的变形区组成。其中,变形区的金属一部分来自从焊缝上部迁移而来的塑性金属;另一部分来自搅拌针端面下方母材经旋转摩擦作用而发生塑性变形的金属。挤压区塑性金属的流动方式分为轴向挤压迁移、水平摩擦迁移和绕流迁移三种。对厚板进行FSW焊接时,挤压区的塑性金属倾向以绕流迁移方式为主,导致焊缝内部形成疏松区或孔洞型缺陷。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛育青
柯黎明
江周明
关键词:  搅拌摩擦焊  搅拌针端部  挤压区  塑性金属  流动方式    
Abstract: For the sake of analyzing the flow behavior of plastic metal in extruded zone around tool pin-tip and its effect on formation quality of the weld, friction stir welding (FSW) experiments were carried out, taking thick copper foils with thickness of 0.02 mm as insert tracer material and 2024 aluminum alloy sheets with thickness of 1 mm and 2 mm as base metal, adopting different stacking methods. It could be found during FSW process that the plasticized metal on upper part of the weld continuously migrated towards the tool pin-tip along the pin thread groove direction, grew up and form an extruded zone around the pin-tip. The extruded zone generally consisted of an expanded zone located on both sides of the pin and a deformed zone under the pin-tip surface. Moreover, the metals in the deformed zone included two parts, one came from the plasticized metal migrated from the weld top, and the other came from the deformed metal of original base material suffered from the rotation frictional force. The flow patterns of plastic metals in the extruded zone were divided into three types: axial-extruding flow, horizontal-friction flow and bypassing flow. For FSW of thick plate, the plastic metals in the extruded zone tended to transfer around the pin in the bypassing flow way, which leaded to the formation of loose zone or cavity defect inside the weld.
Key words:  friction stir welding    pin-tip    extruded zone    plastic material    flow pattern
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TG 453.9  
基金资助: 无损检测技术教育部重点实验室开放基金(EW201703508);江西省教育厅科技项目(DA201803145);轻合金加工科学与技术国防重点学科实验开放基金(EG201703503);南昌航空大学博士科研启动基金(EA201803212)
作者简介:  毛育青:男,1987年生,博士,讲师,主要从事先进连接技术、搅拌摩擦焊、金属基复合材料制备等研究 E-mail:maoyuqing-8888@163.com 柯黎明:通信作者,男,1960年生,博士,教授,博士研究生导师 E-mail:liming_ke@126.com
引用本文:    
毛育青, 柯黎明, 江周明. 搅拌针端部挤压区内塑性金属的流动行为[J]. 材料导报, 2018, 32(20): 3612-3617.
MAO Yuqing, KE Liming, JIANG Zhouming. Flow Behavior of Plastic Metal in Extruded Zone Around Tool Pin-tip. Materials Reports, 2018, 32(20): 3612-3617.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.021  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3612
1 Cao J Z,Wang Z T. Application of aluminum alloy in aeronautics and aerospace vehicle(1)[J]. Light Alloy Fabrication Technology,2013,41(2):1(in Chinese).
曹景竹,王祝堂.铝合金在航空航天器中的应用(1)[J].轻合金加工技术,2013,41(2):1.
2 Wang G Q, Zhao Y H, Hao Y F. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing[J]. Journal of Materials Science & Technology,2018,34:73.
3 Zheng H, Zhao X Y. Lightweight automobile and application of aluminum alloys in modern automobile production[J]. Forging & Stamping Technology,2016,41(2):1(in Chinese).
郑晖,赵曦雅.汽车轻量化及铝合金在现代汽车生产中的应用[J].锻压技术,2016,41(2):1.
4 Borrego L P, Costa J D, Jesus J S, et al. Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds[J]. Theoretical and Applied Fracture Mechanics,2014,70:68.
5 Li H, Zou J S, Yao J S, et al. The effect of TIG welding techniques on microstructure, properties and porosity of the welded joint of 2219 aluminum alloy[J]. Journal of Alloys and Compounds,2017,727:531.
6 Threadgill P L, Leonard A J, Shercliff R, et al. Friction stir wel-ding of aluminium alloys[J]. International Materials Reviews,2013,54(2):49.
7 Lv X Q, Wu C S, Yang C L, et al. Weld microstructure and mechanical properties in ultrasonic enhanced friction stir welding of Al alloy to Mg alloy[J]. Journal of Materials Processing Technology,2018,254:145.
8 Pan F S, Xu A L, Deng D A, et al. Effects of friction stir welding on microstructure and mechanical properties of magnesium alloy Mg-5Al-3Sn[J]. Materials and Design,2016,110:266.
9 Mao Y Q, Ke L M, Liu F C, et al. Formation mechanism of loose defect in friction stir welding thick plates of aluminum alloy[J]. Acta Aeronautica Et Astronautica Sinica,2017,38(3):420367(in Chinese).
毛育青,柯黎明,刘奋成,等.铝合金厚板搅拌摩擦焊焊缝疏松缺陷形成机理[J].航空学报,2017,38(3):420367.
10 Li W Y, Li J F, Zhang Z H, et al. Metal flow during friction stir welding of 7075-T651 aluminum alloy[J]. Experimental Mechanics,2013,53(9):1573.
11 Hasan A F, Bennett C J, Shipway P H. A numerical comparison of the flow behavior in friction stir welding (FSW) using unworn and worn tool geometries[J]. Materials and Design,2015,87:1037.
12 Qian J W, Li J L, Sun F, et al. An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints[J]. Scripta Materialia,2013,68(3-4):175.
13 Keivani R, Bagheri B, Sharifi F, et al. Effects of pin angle and preheating on temperature distribution during friction stir welding ope-ration[J]. Transactions of Nonferrous Metals Society of China,2013,23(9):2708.
14 Xu W F, Liu J H, Luan G H, et al. Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints[J]. Materials and Design,2009,30(6):1886.
15 Canaday Clinton T, Moore Matthew A, Tang W, et al. Through thickness property variations in a thick plate AA7050 friction stir welded joint[J]. Materials Science and Engineering: A,2013,559:678.
16 Mao Y Q, Ke L M, Liu F C, et al. Investigations on temperature distribution, microstructure evolution and property variations along thickness in friction stir welded joints for thick AA7075-T6 plates[J]. The International Journal of Advanced Manufacturing Techno-logy,2016,86(1):141.
17 Shrivastava A, Dingler C, Zinn M, et al. Physics-based interpretation of tool-workpiece interface temperature signals for detection of defect formation during friction stir welding[J]. Manufacturing Letters,2015,5:7.
18 Kim Y G, Fujii H, Tsumura T, et al. Three defect types in friction stir welding of aluminum die casting alloy[J]. Materials Science and Engineering A,2006,415:250.
19 Yan C Y, Xing L, Huang Y D, et al. Influence of tool pin-tip profiles on flow behavior of FSW joint-root material[J]. Transaction of the China Welding Institution,2015,36(4):51(in Chinese).
严超英,邢丽,黄永德,等.搅拌针端部形状对FSW接头根部金属流动行为的影响[J].焊接学报,2015,36(4):51.
20 Chen Y C, Liu S F, Bakavos D, et al. The effect of a paint bake treatment on joint performance in friction stir spot welding AA6111-T4 sheet using a pinless tool[J]. Materials Chemistry and Physics,2013,141(2-3):768.
21 Mishra R S, Ma Z Y. Friction stir welding and processing[J]. Materials Science and Engineering R,2005,50:1.
22 Xu W F, Liu J H, Zhu H Q, et al. Influence of welding parameters and tool pin profile on microstructure and mechanical properties along the thickness in a friction stir welded aluminum alloy[J]. Materials and Design,2013,47(47):599.
[1] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[2] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[3] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[4] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[5] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[6] 张昊,黄永德,郭跃,陆青松. 适用于机器人焊接的搅拌摩擦焊技术及工艺研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 128-134.
[7] 王希靖, 魏学玲, 张亮亮. 焊后时效处理对6082-T6铝合金搅拌摩擦焊接头的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 62-65.
[8] 毛育青,柯黎明,陈玉华,刘奋成. 铝合金厚板搅拌摩擦焊焊缝局部金属的塑性流动特征[J]. 《材料导报》期刊社, 2017, 31(24): 145-149.
[9] 叶俊华,汤爱涛,马仕达,陈巧旺,王玉容,徐安莲. 搅拌摩擦焊接Mg-6Al-1Sn合金组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 79-84.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed