Please wait a minute...
材料导报  2018, Vol. 32 Issue (20): 3606-3611    https://doi.org/10.11896/j.issn.1005-023X.2018.20.020
  金属与金属基复合材料 |
新型多尺度碳氮化物强化马氏体耐热钢的稳定性
张文凤1, 邹爱成1, 刘运强1, 叶东1, 刘晓刚1, 严伟2
1 桂林航天工业学院广西高校机器人与焊接技术重点实验室,桂林 541004;
2 中国科学院金属研究所,沈阳 110016;
A Newly Developed Martensitic Heat-resistant Steel Strengthened by Multi-sized Carbonitrides
ZHANG Wenfeng1, ZOU Aicheng1, LIU Yunqiang1, YE Dong1, LIU Xiaogang1, YAN Wei2
1 Guangxi Colleges and Universities Key Laboratory of Robot & Welding, Guilin University of Aerospace Technology, Guilin 541004;
2 Institute of Metal Research, CAS, Shenyang 110016;
下载:  全 文 ( PDF ) ( 5618KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 提出了一种新型多尺度碳氮化物强化马氏体耐热钢的组织模型。首先,通过降C和去除Mo、B的成分设计原则,分别抑制M23C6长大动力学,进而降低其粗化速率;抑制(Fe, Cr)2Mo型Laves相的形成,进而降低M2X型Laves相的粗化速率;减少硼化物脆性相的生成等,以优化组织结构。其次,通过改进形变诱导析出+热处理的方法,最终获得尺度主要分布在50 nm以下和100~200 nm这两个范围内的形状多样的碳氮化物析出相。本工作研制的新型碳氮化物强化马氏体耐热钢由于含有多尺度碳氮化物的不同强化机制,基体位错密度提高,亚晶界强化作用增强。经650 ℃高温时效1 000 h,其马氏体板条未发生明显变化,基体表现出优良的高温稳定性。同时与传统工艺制得的耐热钢相比,其初始强度基本不变,但随着高温时效时间的延长,其硬度降低较小,性能退化缓慢。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文凤
邹爱成
刘运强
叶东
刘晓刚
严伟
关键词:  多尺度  碳氮化物强化  组织稳定性  马氏体耐热钢  长大动力学  粗化速率    
Abstract: The microstructural model of a new type of multi-sized carbonitrides strengthened Martensitic heat-resistant steel model was proposed in this paper. Firstly, decrease the carbon content and remove Mo and B so as to attenuate the growth kinetics and retard the coarsening of M23C6 during aging, meanwhile minimize the coarsening rate of M2X type of Laves phase and reduce the fragile borides in the matrix. Then, adjust the deformation temperature, the deformation rate, the stress relaxation time and optimize the heat treatment procedure to finally obtain the multi-sized carbonitrides which consist of various forms of M23C6 and MX phases with the size ranging within 0—50 nm and 100—200 nm. By using the designed model, we successfully developed the novel carbonitride-strengthened heat-resistant steel, which showed excellent primary strength and high temperature microstructure stability. The small sized precipitates (below 50 nm) were designed to strongly strengthen the matrix by cumbering the movement of dislocations during creep, while the 100—200 nm particles mainly contribute to the formation of sub-grain boundaries and the stability of the lath boundaries and the prior austenite boundaries. With the help of these two types of carbonitrides, the sub-grain boundaries barely changed during aging at 650 ℃ for 1 000 h. However, the hardness decreased slowly as the time extended, as compared with the steel produced by the traditional procedure.
Key words:  multi-sized    carbonitrides strengthening    microstructure stability    martensitic heat-resistant steel    growth kine-tics    coarsening rate
               出版日期:  2018-10-25      发布日期:  2018-11-22
ZTFLH:  TG142  
基金资助: 国家自然科学基金青年基金(51601044);广西自然科学基金(2015GXNSFBA139225;2016GXNSFBA380230);桂林航天工业学院自然科学基金(YJ1405);广西高校机器人与焊接技术重点实验室开放课题(JQR2017ZR06);博士启动基金
作者简介:  张文凤:女,1983年生,博士,讲师,主要研究方向为耐热钢成分设计、热变形、相变和热处理;低合金高强钢及耐磨钢的成分设计、TMCP轧制工艺、组织分析 E-mail:wfzhang11b@alum.imr.ac.cn
引用本文:    
张文凤, 邹爱成, 刘运强, 叶东, 刘晓刚, 严伟. 新型多尺度碳氮化物强化马氏体耐热钢的稳定性[J]. 材料导报, 2018, 32(20): 3606-3611.
ZHANG Wenfeng, ZOU Aicheng, LIU Yunqiang, YE Dong, LIU Xiaogang, YAN Wei. A Newly Developed Martensitic Heat-resistant Steel Strengthened by Multi-sized Carbonitrides. Materials Reports, 2018, 32(20): 3606-3611.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.20.020  或          http://www.mater-rep.com/CN/Y2018/V32/I20/3606
1 Kimura K, Toda Y, Kushima H, et al. Creep strength of high chromium steel with ferrite matrix [J]. International Journal of Pressure Vessels and Piping,2010,87:282.
2 Hagen I V, Bendick W.The plastic of metallic material, physical society[M].Duisburg, Germany: Duisburg-Essen University Press,2010.
3 Palaparti D P R, Samuel E I, Choudhary B K, et al. Creep properties of grade 91 steel steam generator tube at 923K [J]. Procedia Engineering,2013,55:70.
4 张文凤,李晓理,严伟,等.一种获得多尺度氮化物强化马氏体耐热钢的工艺:中国201310036788.7[P].2013-01-22.
5 Kimura K, Kushima H, Abe F, et al. Inherent creep strength and long term creep strength properties of ferritic steels [J]. Materials Science and Engineering A,1997,234-236:1079.
6 Toda Y, Seki K, Kimura K, et al. Effects of W and Co on long-term creep strength of precipitation strengthened 15Cr ferritic heat resis-tant steels [J]. ISIJ International,2003,43:112.
7 Yan W, Wang W, Shan Y Y, et al. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels [J]. Frontiers of Materials Science,2013,7:1.
8 Milovic′ L, Vuherer T, Blaic′ I, et al. Microstructures and mechanical properties of creep resistant steel for application at elevated temperatures [J]. Materials & Design,2013,46:660.
9 Zhang Wenfeng,Su Qingyong, Wei Yan, et al. Precipitation beha-vior in anitride-strengthened martensitic heat resistant steel during hot deformation [J]. Materials Science&Engineering A,2015,639:173.
10 Zhang Wenfeng, Su Qingyong, Xua Mi, et al. Precipitation behavior in a nitride-strengthened martensitic heat resistant steel during hot deformation [J]. Data in Brief,2015,4:395.
11 Zhang Wenfeng.Study on martensitic heat-resistant steels containing multi-sized carbonitrides[D]. Hefei:University of Science and Technology of China,2014.
张文凤.多尺度碳氮化物强化马氏体耐热钢[D].合肥:中国科学技术大学,2014.
12 Nagode A, Kosec L, Ulet B, et al. Review of creep resistant [J]. Metabk,2011,50:45.
13 张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007.
14 Kostka A, Tak K, Hellmig R, et al. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels [J]. Acta Materialia,2007,55:539.
15 Zhang W F, Hu Q P, Zhou G, et al. Effect of heat treatment on the mechanical properties and the carbide characteristics of a high strength low alloy steel[J]. Journals of Iron Steel Research International,2011,18:143.
16 Zhang W F, Yan W, Sha W, et al. The impact toughness of a nitride-strengthened martensitic heat resistant steel [J]. Science China Technological Sciences,2012,55:1858.17 Park J S, Ha Y S, Lee S J, et al. Dissolution and precipitation kinetics of Nb(C,N) in austenite of a low-carbon Nb-microalloyed steel[J]. Metallurgical and Materials Transactions A,2009,40:560.
18 Fujio Abe, Tabuchi M, Tsukamoto S, et al. Suppression of type Ⅳ fracture in welds of 9Cr-boron steel for A-USC boilers[C]∥The 5th Symposium on Heat Resistant Steels and Alloys for High Efficiency USC/A-USC Power Plants.Seoul, Korea,2013.
19 Zhang W F, Li X L, Sha W, et al. Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel [J]. Mate-rials Science and Engineering A,2014,590:199.
20 Zhang W F, Sha W, Yan W, et al. Constitutive modeling, microstructure evolution and processing map for a nitride strengthened heat resistant steel [J]. Journal of Materials Engineering and Performance,2014,23(8):3042.
21 Zhang W F, Sha W, Yan W, et al. Analysis of deformation beha-vior and workability of advanced 9Cr-Nb-V ferritic heat resistant steels [J]. Materials Science and Engineering A,2014,604:207.
[1] 陈枭, 白小波, 王洪涛, 纪岗昌. 超音速火焰喷涂多尺度WC-17Co粉末制备的金属陶瓷涂层的组织结构与性能[J]. 材料导报, 2019, 33(4): 684-688.
[2] 弯艳玲, 张猛, 杨健, 于化东. 多尺度微结构对铝合金表面疏水性能的影响[J]. 材料导报, 2019, 33(16): 2715-2719.
[3] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[4] 江旭, 马煜林, 刘越. 回火温度对CB2钢的含硼M23C6相析出及力学性能的影响[J]. 材料导报, 2019, 33(12): 2062-2066.
[5] 冷建成, 李政达, 王玉洁, 周临风. 循环应力对磁记忆效应影响的试验研究[J]. 材料导报, 2019, 33(10): 1723-1727.
[6] 周思源,金剑锋,王璐,曹敬祎,杨培军. 多尺度模拟研究纳米凸体几何形貌对初始塑性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 316-321.
[7] 孙国文, 孙伟, 王彩辉. 现代混凝土传输行为与其微结构之间关系的研究方法及其进展[J]. 材料导报, 2018, 32(17): 3010-3022.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed