Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1307-1311    https://doi.org/10.11896/cldb.18030196
  无机非金属及其复合材料 |
CaSO4·2H2O-C3A压实体水化产生膨胀应力的机理
王卫彪, 莫立武, 邓敏
南京工业大学材料科学与工程学院,南京 210009
The Mechanism of Expansion Stress Produced by Hydration of Compacted CaSO4·2H2O-C3A
WANG Weibiao, MO Liwu, DENG Min
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009
下载:  全 文 ( PDF ) ( 2246KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用自行设计的一套膨胀应力测试装置测试了在三维约束条件下CaSO4·2H2O-C3A压实体在40 ℃的水溶液、饱和Ca(OH)2溶液和1 mol/L NaOH溶液中水化生成钙矾石过程中产生的膨胀应力,并测试了压实体中水化生成的钙矾石的吸水肿胀应力。结果表明,CaSO4·2H2O-C3A压实体在水溶液、饱和Ca(OH)2溶液和1 mol/L NaOH溶液中水化生成钙矾石产生的最大膨胀应力为23.9 MPa、27.3 MPa和26.4 MPa,在水溶液中水化膨胀应力最小,表明Ca(OH)2溶液和OH-均会促进钙矾石产生的膨胀应力;生成的钙矾石45 ℃干燥再吸水,在约束条件下40 ℃的吸水肿胀应力分别为1.23 MPa、1.27 MPa和1.26 MPa,远小于钙矾石形成过程产生的膨胀应力,表明钙矾石吸水肿胀应力对CaSO4·2H2O-C3A压实体水化膨胀应力的贡献很小,钙矾石形成时产生的膨胀应力主要源于结晶压力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王卫彪
莫立武
邓敏
关键词:  钙矾石(AFt)  压实体  约束条件  膨胀应力  吸水肿胀应力    
Abstract: The expansive stress produced by compacted CaSO4·2H2O-C3A soaked in water, Ca(OH)2-saturated solution and 1 mol/L NaOH solution was measured by a self-designed device, and the swelling expansive stress of the ettringite hydrated by CaSO4·2H2O-C3A compact.The results show thatettringite was the only product in compacts immersed in water and solutions. The maximum expansive stress produced by the compacts cured in 40 ℃ water, Ca(OH)2-saturated solution and 1 mol/L NaOH solution was 23.9 MPa, 27.3 MPa and 26.4 MPa, respectively. Lower expansive stress of the compact hydrated in water than that hydrated in Ca(OH)2-saturated solution and 1mol/L NaOH solution seems to indicate that both Ca(OH)2-saturated and NaOH solution may promote the expansive stress of ettringite formation. However, the maximum expansion stresses due to the swelling of the generated ettringitein compacts cured in 40 ℃ water, 1 mol/L NaOH solution and Ca(OH)2-satura-ted solution only were about 1.23 MPa, 1.27 MPa and 1.26 MPa, respectively. The swelling pressure is much lower than the expansive stress generated by hydration of CaSO4·2H2O-C3A compacts. This indicates that crystallization pressure of the ettringitewas the main reason of expansion stress and the swelling stress of ettringite had little contribution.
Key words:  ettringite(AFt)    compact    restraint condition    expansive stress    swelling stress
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51461135003)
作者简介:  王卫彪,2018年6月毕业于南京工业大学,获得工程硕士学位,主要从事水泥混凝土材料的研究。邓敏,博导,南京工业大学。主要从事混凝土耐久性、MgO膨胀剂和工业固体废弃物研究,email:dengmin@njtech.edu.cn。
引用本文:    
王卫彪, 莫立武, 邓敏. CaSO4·2H2O-C3A压实体水化产生膨胀应力的机理[J]. 材料导报, 2019, 33(8): 1307-1311.
WANG Weibiao, MO Liwu, DENG Min. The Mechanism of Expansion Stress Produced by Hydration of Compacted CaSO4·2H2O-C3A. Materials Reports, 2019, 33(8): 1307-1311.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030196  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1307
1 Qian J S.Journal of the Chinese Ceramic Society,2017(11), 1569 (in Chinese).
钱觉时. 硅酸盐学报, 2017(11), 1569.
2 Cohen M D. Cement and Concrete Research, 1983, 13, 809.
3 Mehta P K.Cement and Concrete Research, 1973, 3, 1.
4 Wang S B,Zhou M. In: Proceedings of International Symposium on Cement and Concrete. China, Beijing, 1986, pp.43.
5 Rossetti V A, Chiocchio G, Paolini A E. Cement and Concrete Research, 1983, 12(1), 23.
6 Deng M, Tang M S.Cement and Concrete Research, 1994,24, 119.
7 Alexandra Quennoz,Scrivener K L. Cement and Concrete Research, 2012,42, 1032.
8 Liu M, Deng M, Mo L W.Journal of Materials Science and Engineering,2017(4), 626 (in Chinese).
刘猛,邓敏,莫立武. 材料科学与工程学报,2017(4), 626.
9 Wang L.Concrete,2013(8), 83 (in Chinese).
王露. 混凝土, 2013(8), 83.
10 Kamile Tosun, Bulent Baradan. Cement and Concrete Composites, 2010, 32, 271.
11 Wang S B. Journal of the Chinese Ceramic Society,1994(4), 399 (in Chinese).
王善拔. 硅酸盐学报,1994(4), 399.
12 Shi Y X,Wang Z Y,et al. Concrete, 2000(8), 52(in Chinese).
石云兴,王泽云,等.混凝土,2000(8), 52.
13 Ma H Z, Deng M. Journal NanJing Tech University, 2007(4), 626 (in Chinese).
马惠珠,邓敏. 南京工业大学学报,2007(4), 626.
14 Vahid R, Ouhadi. Applied Clay Science, 2008,42, 258.
[1] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[2] 王爱国,何懋灿,莫立武,刘开伟,李燕,周莹,孙道胜. 碳化养护钢渣制备建筑材料的研究进展[J]. 材料导报, 2019, 33(17): 2939-2948.
[3] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[4] 周薛霞,杨赞中,徐艳娇,王路,孙海滨,王永在,杜庆洋,乐红志. 轻质多孔混凝土防水剂的研究进展[J]. 材料导报, 2019, 33(15): 2546-2551.
[5] 王爱国,郑毅,张祖华,刘开伟,马瑞,孙道胜. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560.
[6] 张文华, 吕毓静, 刘鹏宇. EPS混凝土研究进展综述[J]. 材料导报, 2019, 33(13): 2214-2228.
[7] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[8] 胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
[9] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[10] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[11] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[12] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[13] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[14] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[15] 丁杨, 周双喜, 董晶亮, 王中平, 郑智秋. 人工智能方法在土木工程监测中的运用[J]. 材料导报, 2019, 33(z1): 274-277.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed