Please wait a minute...
材料导报  2020, Vol. 34 Issue (18): 18159-18164    https://doi.org/10.11896/cldb.19080203
  高分子与聚合物基复合材料 |
纳米Al2O3粒子含量对碳泡沫复合材料力学和高温氧化性能的影响
王斌, 罗晓宇, 王琛, 周晓蕊, 胡颖晖, 房二鑫
西安工程大学材料工程学院,西安 710048
Influence of Content of Al2O3 Nanoparticles on the Mechanical and High-temperature Oxidation Properties of Carbon Foam Composites
WANG Bin, LUO Xiaoyu, WANG Chen, ZHOU Xiaorui, HU Yinghui, FANG Erxin
School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, China
下载:  全 文 ( PDF ) ( 5899KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 以锆改性酚醛树脂为碳源,纳米Al2O3粒子为增强相,酚醛空心微球为闭孔微球相,利用压塑成型-碳化工艺制备纳米Al2O3粒子增强碳泡沫复合材料。通过扫描电子显微镜(SEM)、万能试验机和热氧化炉研究了纳米Al2O3粒子含量对碳泡沫复合材料的微观结构、压缩和弯曲性能及抗氧化性能的影响。结果表明,纳米Al2O3粒子的加入使得基体与微球界面变粗糙,二者结合更紧密;当纳米Al2O3粒子的质量分数为10%时,碳泡沫复合材料的压缩强度和比压缩强度均达到最大值,分别为18.53 MPa和37.82 MPa·cm3·g-1,较改性前分别提高了97%和61.41%;而纳米Al2O3粒子的加入并没有明显改善碳泡沫复合材料的弯曲性能;当纳米Al2O3粒子的质量分数为15%时,碳泡沫的抗氧化性能最好;700℃等温氧化30 min,失重为28.15%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王斌
罗晓宇
王琛
周晓蕊
胡颖晖
房二鑫
关键词:  碳泡沫  纳米粒子  力学性能  抗氧化    
Abstract: Al2O3 nanoparticles reinforced carbon foam composites, with zirconium modified phenolic resin as origin of carbon, Al2O3 nanoparticles as reinforcement, and phenolic hollow microspheres as closed phase, were prepared by the process of compression molding and carbonization. The effects of the amount of Al2O3 nanoparticles on the microstructure, compression and bending properties, and oxidation resistance of carbon foam composites were investigated by SEM, universal testing machine and thermal oxidation furnace, respectively. Results showed that Al2O3 nanoparticles induced the rough interface between the matrix and the microspheres, making them more tightly bonded. When the amount of Al2O3 nanoparticles was 10wt%, the compressive strength and specific compressive strength both reached the maximum, 18.53 MPa and 37.82 MPa·cm3·g-1, respectively. Compared to pure carbon foam, the compressive strength and specific compressive strength of modified carbon foam increased by 97% and 61.41%, respectively. While the addition of Al2O3 nanoparticles did not improve the bending properties significantly. When the content of Al2O3 nanoparticles is 15wt%, the oxidation resistance performance shows the best; the weight loss is 28.15% during the isothermal oxidation, at 700℃ for 30 min.
Key words:  carbon foam    nanoparticles    mechanical property    oxidation resistance
               出版日期:  2020-09-25      发布日期:  2020-09-12
ZTFLH:  TB332  
基金资助: :陕西省教育厅重点科学研究计划项目(20JY027);中国纺织工业联合会科技指导性项目(2018062);国家级大学生创新创业训练项目(201810709037);陕西省重点研发计划项目(2020NY-154)
通讯作者:  1006171819@qq.com   
作者简介:  王斌,讲师,硕士研究生导师,2014年毕业于西北工业大学材料学院,获工学博士学位。2017年国家公派赴美国北得州大学访学1年。现主要从事树脂基碳泡沫复合材料的研究,近年来发表学术论文9篇,主持陕西省科技厅重点研发计划项目、陕西省教育厅自然专项、中国纺织工业联合会科技指导项目、陕西省2011产业用纺织品协同创新中心科研项目等项目。
王琛,西安工程大学教授,硕士研究生导师,陕西纺织学会、陕西复合材料学会会员。主持完成及参与完成10余项国家级、省部级和厅局级项目;在国内外期刊上发表学术论文50余篇,主编出版34万字专著1部,参编“十一五”国家级规划教材1部,参编校级规划教材2部。在高分子化学合成及高分子材料科学领域有良好的研究工作基础。研究方向包括高分子材料的合成与改性及功能纤维的研发。
引用本文:    
王斌, 罗晓宇, 王琛, 周晓蕊, 胡颖晖, 房二鑫. 纳米Al2O3粒子含量对碳泡沫复合材料力学和高温氧化性能的影响[J]. 材料导报, 2020, 34(18): 18159-18164.
WANG Bin, LUO Xiaoyu, WANG Chen, ZHOU Xiaorui, HU Yinghui, FANG Erxin. Influence of Content of Al2O3 Nanoparticles on the Mechanical and High-temperature Oxidation Properties of Carbon Foam Composites. Materials Reports, 2020, 34(18): 18159-18164.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080203  或          http://www.mater-rep.com/CN/Y2020/V34/I18/18159
1 Li Q L, Chen L, Ding J J, et al. Carbon, 2016, 104, 90.
2 Wang Y, Kong D Z, Huang S Z, et al. Journal of Materials Chemistry A, 2018, 6(23), 10813.
3 Liu X, Wang Y L, Zhan L. Chinese Journal of Chemical Engineering, 2018, 26(2), 415.
4 Lee C G, Song M K, Ryu J C, et al. Chemosphere, 2016, 153, 1.
5 Li X M, Liu S Q, Huang Y B, et al. Chemistry and Industry of Forest Products, 2016, 36(5), 53(in Chinese).
李雪梅, 刘守庆, 黄元波, 等. 林产化学与工业, 2016, 36(5), 53.
6 Wu X W, Liu Y G, Fang M H, et al. Carbon, 2011, 49(5), 1782.
7 Zhang H G. Structure control and composite reinforcement of coal-tar pitch-based carbon foam. Master's Thesis, East China University of Scie-nce and Technology, China, 2014(in Chinese).
张洪刚. 煤沥青基泡沫炭的结构控制及其复合增强. 硕士学位论文,华东理工大学, 2014.
8 Luo R Y, Ni Y F, Li J S, et al. Materials Science & Engineering A, 2011, 528(4), 2023.
9 Lu Q, Li T H, Zhao T K, et al. Journal of Functional Materials, 2013, 44(10), 1461(in Chinese).
吕婧, 李铁虎, 赵廷凯, 等. 功能材料, 2013, 44(10), 1461.
10 Huang Z X, Ding J, Qin Y, et al. Acta Materiae Compositae Sinica, 2016, 33(10), 2174(in Chinese).
黄志雄, 丁杰, 秦岩, 等. 复合材料学报, 2016, 33(10), 2174.
11 Sun X D. Preparation and properties of epoxy/Al2O3 nanocomposites. Master's Thesis, Harbin University of Science and Technology, China, 2013(in Chinese).
孙雪丹. 环氧树脂/Al2O3纳米复合材料的制备与性能研究. 硕士学位论文, 哈尔滨理工大学, 2013.
12 Wu W, Chen S Y, Zongmeng J Z. Materials Reports B:Research Papers, 2017, 31(10), 21(in Chinese).
吴唯, 陈诗英, 宗孟静子. 材料导报:研究篇, 2017, 31(10), 21.
13 Xing Z G, Lu Z L, Wei X, et al. Ordnance Material Science and Engineering, 2009(3), 27(in Chinese).
邢志国, 吕振林, 魏鑫, 等. 兵器材料科学与工程, 2009(3), 27.
14 Ouyang Z M, Li S S, Shi Z, et al. Acta Materiae Compositae Sinica, 2019(7), 1(in Chinese).
欧阳舴艋, 李双双, 石琢, 等. 复合材料学报, 2019(7), 1.
15 Liu C Q, Li K Z, Li H J, et al.Polymer Degradation & Stability, 2014, 102(4), 180.
16 Tao X Y, Wei X Y, Chen Q, et al. Advances in Applied Ceramics, 2013, 112(5), 301.
17 Liu G, Zhang D J, Zhang H, et al. Journal of Materials Engineering, 2010(1), 47(in Chinese).
刘刚, 张代军, 张晖, 等. 材料工程, 2010(1), 47.
18 Carlisle K B, Lewis M, Chawla K K, et al. Acta Materialia, 2007, 55(7), 2301.
19 Wang C. Modification technology of polymer materials, China Textile & Apparel Press,China, 2007(in Chinese).
王琛. 高分子材料改性技术,中国纺织出版社, 2007.
20 Berlin A A, Volfson S A, Enikolopian N S, et al. Principles of polymer composites, Springer-Verlag, Germany, 1986.
21 Timmerman J F, Hayes B S, Seferis J C. Composites Science and Techno-logy, 2002, 62(9), 1249.
22 Sun K, Shu D J, He C. Materials Reports, 2017, 31(S2), 385(in Chinese).
孙阔, 树德军, 贺崇. 材料导报, 2017, 31(专辑30), 385.
[1] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[2] 何金珊, 方平, 王西涛, 武会宾. Fe-Mn-Al-Nb系轻质低温钢的组织和性能[J]. 材料导报, 2021, 35(2): 2074-2077.
[3] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[4] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[5] 黄勇, 史才军, 欧阳雪, 张超慧, 史金华, 吴泽媚. 混凝土劈裂拉伸测试方法及性能研究进展[J]. 材料导报, 2021, 35(1): 1131-1140.
[6] 张欣雨, 毛小南, 王可, 陈茜. 典型α+β钛合金组织对静态和动态性能的影响[J]. 材料导报, 2021, 35(1): 1162-1167.
[7] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[8] 王效军, 刘太奇. 碳纳米颗粒对碳纳米管复合材料电热-力学性能的影响[J]. 材料导报, 2020, 34(Z2): 63-66.
[9] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[10] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[11] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[12] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[13] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[14] 王力, 裴迪, 李新林, 裴志洋. 轧制ATZ331合金的显微组织与力学性能[J]. 材料导报, 2020, 34(Z2): 356-359.
[15] 王鸣, 张旭, 赵阳, 都亮, 程丽丽, 梁萌. 轧制延展率对IF钢箔力学性能的影响[J]. 材料导报, 2020, 34(Z2): 395-398.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed