Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6006-6009    https://doi.org/10.11896/cldb.19030126
  无机非金属及其复合材料 |
电子束热处理快速制备石墨烯技术
许壮1, 高召顺1,2, 韩立1, 左婷婷1, 伍岳1, 肖立业1, 孔祥东1
1 中国科学院电工研究所,北京 100190;
2 中国科学院洁净能源创新研究院,大连 116000
Preparation of Graphene by Rapid Electron Beam Annealing Method
XU Zhuang1, GAO Zhaoshun1,2, HAN Li1, ZUO Tingting1, WU Yue1, XIAO Liye1, KONG Xiangdong1
1 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
2 Dalian National Laboratory for Clean Energy, Dalian 116000, China
下载:  全 文 ( PDF ) ( 5287KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于碳原子在金属材料中的偏析机理,采用热处理掺碳镍膜的方式制备石墨烯要求升降温速率越快越好。电子束加热的特点是升降温速率极快,短时间内即可将样品加热至所需实验温度,因此本研究提出采用电子束快速热处理的方式制备石墨烯。将掺杂一定碳原子浓度的金属镍膜置于电子束热处理设备中,并在一定温度下对其进行加热。当碳原子浓度为1%时,电子束热处理制备石墨烯的温度区间为1000~1100℃,仅需要5s热处理时间,即可得到结晶性好、缺陷少的高质量石墨烯。本研究还揭示了电子束作用下碳原子在镍膜中的偏析机理,极大的升降温速率使Ni-C体系在Ni-多层石墨烯和Ni-石墨相区间停留时间极短,镍膜表面多余的碳原子极少,从而形成高质量的单层石墨烯。电子束热处理制备石墨烯的方法效率高、安全性好,提高了石墨烯的应用优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许壮
高召顺
韩立
左婷婷
伍岳
肖立业
孔祥东
关键词:  石墨烯  电子束  快速热处理  碳偏析  多晶镍膜    
Abstract: Based on the segregation mechanism of carbon atoms in metal materials, the preparation of graphene by heat treatment of carbon-doped nickel film required a very fast heating and cooling rate. The characteristic of electron beam annealing was that the heating rate was very fast, and the sample could be heated to the required temperature in a short time. Therefore, an electron beam annealing method was proposed to prepare graphene. The nickel film doped with a certain concentration of carbon atoms was heated in the electron beam heat treatment equipment at a certain temperature. When the concentration of carbon atom was 1%, the temperature range of preparing graphene by electron beam annealing method was determined to be 1 000—1 100 ℃, and only 5 s was needed to obtain high-quality graphene with good crystallinity and few defects. The segregation mechanism of carbon atoms in nickel film under the irradiation of electron beam was revealed. The high heating and cooling rate made the residence duration of Ni-C system in Ni-multilayer graphene and Ni-graphite phase interval very short, and the excess carbon atoms on the surface of nickel film were very few, thus forming high-quality single-layer graphene. The method of preparing graphene by electron beam annealing method had the advantages of high efficiency and safety, and improved the application advantages of graphene.
Key words:  graphene    electron beam    rapid annealing    carbon segregation    polycrystalline Ni film
                    发布日期:  2020-03-12
ZTFLH:  O647  
基金资助: 中国科学院百人计划项目
作者简介:  许壮,2017年6月毕业于兰州大学。2017年至今在中国科学院电工研究所博士后流动站工作,主要研究方向为电子束在材料领域的应用;高召顺,中国科学院电工研究所研究员。2009年毕业于中科院电工研究所并获得工学博士学位。2018年入选中国科学院 “百人计划”。长期从事新型电工材料研究工作,目前主要致力于通过纳米碳掺杂和纳米技术提高常规铜、铝导线导电性能的研究。
引用本文:    
许壮, 高召顺, 韩立, 左婷婷, 伍岳, 肖立业, 孔祥东. 电子束热处理快速制备石墨烯技术[J]. 材料导报, 2020, 34(6): 6006-6009.
XU Zhuang, GAO Zhaoshun, HAN Li, ZUO Tingting, WU Yue, XIAO Liye, KONG Xiangdong. Preparation of Graphene by Rapid Electron Beam Annealing Method. Materials Reports, 2020, 34(6): 6006-6009.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030126  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6006
1 Balandin A A, Ghosh S, Bao W, et al. Nano Letters, 2008,8 (3),902.
2 Lee C, Wei X, Kysar J W, et al. Science, 2008,321 (5887),385.
3 Chen J H, Jang C, Xiao S, et al. Nature Nanotechnol, 2008,3 (4),206.
4 Jang B Z, Zhamu A. Journal of Materials Science, 2008,43 (15),5092.
5 Nair R R, Blake P, Grigorenko A N, et al. Science, 2008,320 (5881),1308.
6 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004,306 (5696),666.
7 Meyer J C, Geim A K, Katsnelson M I, et al. Nature, 2007,446 (7131),60.
8 Green A A, Hersam M C. Journal of Physical Chemistry Letters, 2010,1 (2),544.
9 Hernandez Y, Nicolosi V, Lotya M, et al. Nature Nanotechnology, 2008,3 (9),563.
10 Liang Y T, Mark C H. Journal of the American Chemical Society, 2010,132,17661.
11 Park S, Wang G, Cho B, et al. Nature Nanotechnology, 2012,7 (7),438.
12 Bai H, Li C, Shi G. Advanced Materials, 2011,23 (9),1089.
13 Yan X, Cui X, Li L S. Journal of the American Chemical Society, 2010,132 (17),5944.
14 Somani P R, Somani S P, Umeno M. Chemical Physics Letters, 2006,430 (1-3),56.
15 Kim K S, Zhao Y, Jang H, et al. Nature, 2009,457 (7230),706.
16 Liu N, Fu L, Dai B, et al. Nano Letters, 2011,11 (1),297.
17 Han D, Wang X, Zhao Y, et al. Carbon, 2017,124,105.
18 Yu Q, Lian J, Siriponglert S, et al. Applied Physics Letters, 2008,93 (11),113103.
19 Xu M, Fujita D, Sagisaka K, et al. ACS Nano, 2011,5 (2),1522.
20 Kwak J, Chu J H, Choi J K, et al. Nature Communications, 2012,3,645.
21 Garaj S, Hubbard W, Golovchenko J A. Applied Physics Letters, 2010,97 (18),183103.
22 Malard L, Pimenta M, Dresselhaus G, et al. Physics Reports, 2009,473 (5-6),51.
23 Ferrari A C, Meyer J C, Scardaci V, et al. Physical Review Letters, 2006,97 (18),187401.
24 Ferrari A C, Basko D M. Nature Nanotechnology, 2013,8 (4),235.
25 Liu X, Fu L, Liu N, et al. The Journal of Physical Chemistry C, 2011,115 (24),11976.
26 Cong C, Yu T, Sato K, et al. ACS Nano, 2011,5 (11),8760.
27 Odahara G, Otani S, Oshima C, et al. Surface Science, 2011,605 (11-12),1095.
28 Eckmann A, Felten A, Mishchenko A, et al. Nano Letters, 2012,12 (8),3925.
29 Li X, Cai W, An J, et al. Science, 2009,324 (5932),1312.
30 Ni Z, Chen W, Fan X, et al. Physical Review B, 2008,77 (11),115416.
31 Liu N, Fu L, Dai B, et al. Nano Letters, 2010,11 (1),297.
32 Reina A, Jia X, Ho J, et al. Nano Letters, 2008,9 (1),30.
33 Gupta A, Chen G, Joshi P, et al. Nano Letters,2006,6 (12),2667.
34 Li X, Wang X, Zhang L, et al. Science, 2008,319 (5867),1229.
35 Novoselov K, Jiang D, Schedin F, et al. Proceedings of the National Academy of Sciences, 2005,102 (30),10451.
36 Zhang C H, Fu L, Zhang Y F, et al. Acta Chimica Sinica, 2013,71 (3),308 (in Chinese).
张朝华, 付磊, 张艳峰, 等. 化学学报, 2013,71 (3),308.
37 Fujita D, Homma T. Surface and Interface Analysis, 1992,19 (1-12),430.
38 Seah C M, Vigolo B, Chai S P, et al. RSC Advances, 2016,6 (47),41447.
[1] 王延伟, 卢维尔, 闫美菊, 夏洋. 化学气相沉积技术制备亚厘米尺寸单晶石墨烯的工艺研究[J]. 材料导报, 2020, 34(6): 6001-6005.
[2] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[3] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[4] 任静, 李秀艳, 辛王鹏, 周国伟. Bi2WO6/石墨烯复合材料的制备与光催化应用研究进展[J]. 材料导报, 2020, 34(5): 5001-5007.
[5] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[6] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[7] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[8] 方小利, 姚雪菲, 张宁, 杨红梅. 基于关键词共现网络法的中国石墨烯领域的研究热点分析[J]. 材料导报, 2019, 33(Z2): 78-82.
[9] 安文, 马建中, 徐群娜. 聚合物基水滑石-石墨烯复合阻燃材料的研究进展[J]. 材料导报, 2019, 33(Z2): 604-608.
[10] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[11] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[12] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[13] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[14] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[15] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed