Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16020-16024    https://doi.org/10.11896/cldb.19080144
  无机非金属及其复合材料 |
磨削加工对Al2O3陶瓷表面质量与力学性能的影响
梁静静1, 张相召1, 赵光辉1, 刘桂武1, 邵海成1, 乔冠军1,2
1 江苏大学材料科学与工程学院,镇江 212013;
2 西安交通大学金属材料强度国家重点实验室,西安 710049
Effect of Grinding Process on Surface Quality and Mechanical Properties of Al2O3 Ceramics
LIANG Jingjing1, ZHANG Xiangzhao1, ZHAO Guanghui1, LIU Guiwu1, SHAO Haicheng1, QIAO Guanjun1,2
1 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China;
2 State Key Laboratory of Metal Material Strength, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 5092KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 航空航天等领域的快速发展对Al2O3陶瓷表面加工质量的要求越来越高。目前,磨削加工由于精度高、材料去除率高而成为陶瓷表面加工最主要、最常用的方法,因此,建立磨削加工方式、陶瓷表面质量和力学性能之间的联系具有十分重要的意义。本工作利用精密研磨抛光机和磨床对Al2O3陶瓷进行表面加工,探讨了不同磨盘转速、磨盘/磨床砂轮目数、砂轮进刀量、磨床横向平移速度等不同磨削加工条件对陶瓷表面质量(材料表面粗糙度、表面形貌、表面残余应力)和力学性能的影响。研究结果表明:相比于磨盘加工,磨床加工对Al2O3陶瓷表面质量的影响较大,表现为磨床加工后的粗糙度数值较大,且磨削表面产生了较为明显的加工划痕。Al2O3陶瓷在磨削加工中的去除方式主要为脆性去除和延性域去除,加工后其表面残余应力均为压应力。特别地,在高的磨盘或砂轮目数、大的磨盘转速、较小的砂轮进刀量以及大的磨床平移速度情况下,Al2O3陶瓷以延性域去除为主,表面残余压应力最高达到-241 MPa。Al2O3陶瓷的力学性能是由表面粗糙度、表面微观形貌、表面残余应力共同作用的,随着陶瓷表面粗糙度的减小、残余压应力的增大,陶瓷弯曲强度提高,最高可达528 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁静静
张相召
赵光辉
刘桂武
邵海成
乔冠军
关键词:  Al2O3陶瓷  磨削加工  表面粗糙度  残余应力  弯曲强度    
Abstract: Ahigher requirement for the surface quality of Al2O3 ceramic had been put forward to adapt the rapidly development in the aerospace or other fields. At present, the grinding process was one of the most commonly used methods for ceramic surface processing due to the high precision of grinding and high material removal rate. Therefore, it was greatly significant to clarify the relationship among grinding processing methods, surface quality and mechanical properties. The surface processing of Al2O3 ceramic was performed using the precision grinding/polishing machine and grinding machine. The effect of different grinding conditions involving grinding disc speed, the abrasive grain size of grinding disc or wheel, the longitudinal feed or horizontal translation speed of grinding wheel on the surface quality, surface residual stress and mechanical properties of Al2O3 ceramic were investigated and discussed. The experimental results show that a more rough surface (such as the processing scratches) was observed on the surface of Al2O3 ceramic after the grinding machine processing, indicating that the surface processing used by grin-ding machine had a greater influence on the surface quality of Al2O3 ceramic compared to the grinding disc processing. Furthermore, the removal mechanism of Al2O3 ceramics during grinding processing was a mixture of brittle removal and ductile removal, and the surface residual stresses exhibit compressive stress after processing. Especially, the removal mechanism of Al2O3 ceramics was mainly ductile removal and the surface residual compressive stress was up to -241 MPa in the case of fine abrasive grain size of grinding disc or wheel, large grinding disc rotation speed, small longitudinal feed and large horizontal translation speed of grinding wheel. The surface roughness, microstructure and surface residual stress had a comprehensive effect on the bending strength of Al2O3 ceramics. The bending strength increased to 528 MPa with decreasing the surface roughness and residual compressive stress of Al2O3 ceramic.
Key words:  Al2O3 ceramics    grinding process    surface roughness    residual stress    bending strength
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TG580  
  TQ174  
基金资助: 国家重点研发计划项目 (2017YFB0310400); 国家自然科学基金(51572112)
通讯作者:  xzzhang2018@ujs.edu.cn   
作者简介:  梁静静,2017年毕业于河南城建学院,获得工学学士学位。现为江苏大学材料科学与工程学院硕士研究生。目前主要研究领域为工程陶瓷材料的表面微加工。
张相召,江苏大学材料学院讲师。2018年获江苏大学博士学位,2017—2018年在东京工业大学联合培养。目前主要从事金属/陶瓷复合材料的高温润湿及钎焊、第一性原理计算等研究。目前在国内外学术期刊上发表论文20篇,合作申请专利9项;参与了一项国家自然科学基金(51572112)和一项江苏省自然科学基金(BK20151340)。
引用本文:    
梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
LIANG Jingjing, ZHANG Xiangzhao, ZHAO Guanghui, LIU Guiwu, SHAO Haicheng, QIAO Guanjun. Effect of Grinding Process on Surface Quality and Mechanical Properties of Al2O3 Ceramics. Materials Reports, 2020, 34(16): 16020-16024.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080144  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16020
1 Medvedovski E. Ceramics International, 2006, 32(4), 369.
2 Gao L, Hong J S, Miyamoto H, et al. Journal of the European Ceramic Society, 2000, 20(12), 2149.
3 Wang J, Stevens R. Journal of Materials Science, 1989, 24(10), 3421.
4 De Aza A H, Chevalier J, Fantozzi G, et al. Key Engineering Materials, 2002, 206-213(3), 1535.
5 Zhang B, Zheng X L, Tokura H, et al. Journal of Materials Processing Technology, 2003, 132(1), 353.
6 Mcnamara D, Alveen P, Carolan D, et al. Procardia Materials Science, 2014, 3, 1810.
7 Blackley W S, Scattergood R O. Precision Engineering, 1991, 13(2), 95.
8 Yin L, Huang H. Machining Science and Technology, 2004, 8(1), 21.
9 Wu Y H, Wang W D, Li S H, et al. Journal of Shenyang Jianzhu University (Natural Science), 2017, 33(6), 1080(in Chinese).
吴玉厚, 王维东, 李颂华, 等. 沈阳建筑大学学报 (自然科学版), 2017, 33(6), 1080.
10 Wu Y H, Wang H, Sun J, et al. Combined Machine Tools and Automated Machining Technology, 2019(4), 124(in Chinese).
吴玉厚, 王浩, 孙健, 等. 组合机床与自动化加工技术,2019(4),124.
11 Choudhary A, Naskar A, Paul S. Journal of Manufacturing Processes, 2018, 35, 624.
12 Emami M, Sadeghi M H, Sarhan A A D, et al. Journal of Cleaner Production, 2014, 66, 632.
13 Wang D, Yamaguchi H, Shinmura T. Transactions of the Japan Society of Mechanical Engineers, 2002, 68(673), 2770.
14 Yamaguchi H, Shinmura T. Precision Engineering, 2004, 28(2), 135.
15 Akbari J, Borzoie H, Mamduhi M H. World Academy of Science: Engineering and Technology, 2008, 41, 785.
16 Samuel R, Chandrasekar S, Farris T N, et al. Journal of the American Ceramic Society, 1989, 72(10), 1960.
17 Shukla P, Crookes R, Wu H. Materials & Design, 2019, 167, 107626.
18 Annamalai V E, Sornakumar T, Gokularathnam C, et al. Journal of European Ceramic Society, 1993, 11(5), 463.
19 Zhang G F, Zeng Y J, Zhang W B, et al. International Journal of Precision Engineering and Manufacturing, 2016, 17(11), 1425.
20 Malkin S, Hwang T W. CIRP Annals, 1996, 45(2), 569.
21 Zhao B, Ren G, Yao J, et al. Tool Engineering, 2011, 12(1), 294.
22 Lange F F, James M R, Green D J. Journal of the American Ceramic Society, 1983, 66(2), C16.
23 Johnson-Walls D, Evans A G, Marshall D B, et al. Journal of the American Ceramic Society, 1986, 69(1), 44.
[1] 吴学志, 尹邦跃, 郑新海. 碳纳米管增强UO2燃料力学性能研究[J]. 材料导报, 2020, 34(Z1): 153-156.
[2] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[3] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[4] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[5] 权国政, 施瑞菊, 刘乔, 赵江, 周杰, 王月乔. 电弧熔丝单层单道积材残余应力模拟分析及锤击消除研究[J]. 材料导报, 2020, 34(14): 14154-14160.
[6] 吴奇, 李晓延, 孙鲁阳, 王小鹏. 2219铝合金焊接接头软化模型的建立与应用[J]. 材料导报, 2020, 34(10): 10138-10143.
[7] 刘诚, 何兴会, 全锋, 谢昕芸, 孙庆斌, 廖静, 曲曙光. 大尺寸件氧化铝陶瓷与可伐合金的钎焊封接工艺研究[J]. 材料导报, 2019, 33(Z2): 202-205.
[8] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[9] 郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟. 减摩耐磨多层膜设计及研究进展[J]. 材料导报, 2019, 33(3): 444-453.
[10] 乔巍, 姚卫星, 马铭泽. 复合材料残余应力和固化变形数值模拟及本构模型评价[J]. 材料导报, 2019, 33(24): 4193-4198.
[11] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[12] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[13] 韩志勇, 丘珍珍, 史文新. 强流脉冲电子束粘结层表面改性对热障涂层热震及残余应力的影响[J]. 材料导报, 2018, 32(24): 4303-4308.
[14] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[15] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed