Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 971-976    https://doi.org/10.11896/j.issn.1005-023X.2018.06.022
  材料研究 |
短切玻纤增强PEKK与BDM/DABPA共混体系固化反应动力学及断裂韧性
李洪峰1, 2, 曲春艳1, 王德志1, 刘仲良2, 顾继友2, 张杨1
1 黑龙江省科学院石油化学研究院,哈尔滨 150040;
2 东北林业大学材料科学与工程学院,哈尔滨 150040
Curing Kinetics and Fracture Toughness of BDM/DABPA System Modified by Short Glass Fiber Reinforced Polyether Ketone Ketones (PEKK-GF)
LI Hongfeng1, 2, QU Chunyan1, WANG Dezhi1, LIU Zhongliang2, GU Jiyou2, ZHANG Yang1
1 Institute of Petrochemistry Heilongjiang Academy of Sciences, Harbin 150040;
2 College of Material Science and Engineering, Northeast Forestry University, Harbin 150040
下载:  全 文 ( PDF ) ( 1612KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用二烯丙基双酚A(DABPA)对二苯甲烷型双马来酰亚胺(BDM)树脂进行扩链,采用短切玻纤增强聚醚酮酮(PEKK-GF)对BDM/DABPA树脂进行改性。利用差示扫描量热法(DSC)研究了PEKK-GF改性BDM/DABPA树脂固化动力学,确定了改性树脂的固化工艺,并计算出了改性树脂的部分动力学参数。改性树脂的力学性能通过万能拉力机进行测试,结果表明当BDM/DABPA体系中加入10%(质量分数)的PEKK-GF时,改性树脂固化物的冲击强度比原来体系提高了69%,临界应力强度因子(KIC)和临界应变能释放率(GIC)值分别为1.22 MPa·m0.5和295 J/m2,分别提高了21%和59%;拉伸强度从85.21 MPa增加到96.39 MPa,拉伸模量从4.198 GPa增加到4.531 GPa;弯曲强度从133.0 MPa增加到140.4 MPa,弯曲模量从4.080 GPa增加到4.251 GPa。采用动态热机械分析法(DMA)对改性树脂体系耐热性进行研究,结果表明,当BDM/DABPA树脂中加入10%(质量分数)的PEKK-GF时,改性树脂固化物的玻璃化温度提高了16.5 ℃,达到263.5 ℃。该改性树脂综合性能优异,在耐高温预浸料基体树脂及胶黏剂等领域具有很好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李洪峰
曲春艳
王德志
刘仲良
顾继友
张杨
关键词:  聚醚酮酮  双马来酰亚胺  固化反应动力学  断裂韧性    
Abstract: Diphenylmethyenebismaleimide (BDM) chain was extended by diallyl bisphenol A (DABPA). Short glass fiber reinforced polyether ketone ketones (PEKK-GF) was used to modify the BDM/DABPA resin. The curing kinetics of the BDM/DABPA resin modified by PEKK-GF was investigated by non-isothermal differential scanning calorimetry (DCS). Curing process of the modified resin was determined and some kinetic parameters were calculated. The mechanical properties of the modified resin were tested by universal tensile machine. The results showed that the impact strength of the cured modified resin was improved by 69%. The plan strain critical stress intensity factor (KIC) and the plan strain critical strain energy release rate (GIC) of the modified resin could reach 1.22 MPa·m0.5 and 295 J/m2, increased by 21% and 59% respectively when 10 wt% PEKK-GF was used. Tensile strength increased from 85.21 MPa to 96.39 MPa and tensile modulus increased from 4.198 GPa to 4.531 GPa. Bending strength increased from 133.0 MPa to 140.4 MPa and bending modulus increased from 4.080 GPa to 4.251 GPa. The thermal stability was cha-racterized by dynamic mechanical analysis (DMA).The results showed that the glass transition temperature (Tg) of cured modified resin reached 263.5℃, which increased by 16.5 ℃. With these excellent performances, the modified resin may be applied to the fields of high temperature prepreg and adhesive.
Key words:  polyether ketone ketones    bismaleimide    curing reaction kinetics    fracture toughness
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TQ314.2  
基金资助: 黑龙江省科学院杰出青年基金项目(2017-JQ-01)
作者简介:  李洪峰:男,1980年生,博士,副研究员,主要从事耐高温树脂及胶黏剂的研究 E-mail:lihongfengcn@126.com
引用本文:    
李洪峰, 曲春艳, 王德志, 刘仲良, 顾继友, 张杨. 短切玻纤增强PEKK与BDM/DABPA共混体系固化反应动力学及断裂韧性[J]. 材料导报, 2018, 32(6): 971-976.
LI Hongfeng, QU Chunyan, WANG Dezhi, LIU Zhongliang, GU Jiyou, ZHANG Yang. Curing Kinetics and Fracture Toughness of BDM/DABPA System Modified by Short Glass Fiber Reinforced Polyether Ketone Ketones (PEKK-GF). Materials Reports, 2018, 32(6): 971-976.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.022  或          https://www.mater-rep.com/CN/Y2018/V32/I6/971
1 Takao I, Tsutomu N, Wakihci F, et al. Modification of bismalei-mide resin by Poly(phthaloyldiphenylether) and therelated copolymes[J].Journal of Applied Polymer Science,1998,67(5):769.
2 Yuan Q, Huang F, Jiao Y. Characterization of modified bismalei-mide resin[J].Journal of Applied Polymer Science,2015,62(62):459.
3 Meng Q H, Gu Y J, Liang G Z, et al. Modification of bismaleimide resin by hyperbranched polysiloxane[J].Acta Polymerica Sinica,2010(10):1245(in Chinese).
孟庆辉,顾媛娟,梁国正,等.超支化聚硅氧烷改性双马来酰亚胺树脂的研究[J].高分子学报,2010(10):1245.
4 Wang J L, Wang C. Study of cyanate ester resin based composite modified by nano-SiC[J].Materials Review B:Research Papers,2010,24(5):44(in Chinese).
王君龙,王闯.纳米SiC改性氰酸酯树脂基复合材料的研究[J].材料导报:研究篇,2010,24(5):44.
5 Wu Y, Zhang Q Y, Chen Y. An effective modification of bismalei-mide resin with PES/PEK[J].Journal of Northwestern Polytechnical University,2012,30(1):149(in Chinese).
吴寅,张秋禹,陈营.PES/PEK改性BMI树脂的性能研究[J].西北工业大学学报,2012,30(1):149.
6 Li H F, Wang D Z, Zhao L W, et al. Study on Diallyl biphenol a modified bismaleimide resin toughened with polyamide-imide[J].China Adhesives,2013,22(7):5(in Chinese).
李洪峰,王德志,赵立伟,等.聚酰胺酰亚胺树脂对BMI/DP共聚树脂的增韧研究[J].中国胶黏剂,2013,22(7):5.
7 Ding F C, Chen Q S, Lai L, et al. Bismaleimide (BMI) resin modified by PEEK bearing pendant reactive propenyl groups[J].Advanced Materials Research,2011,197:1299.
8 Gan D, Lu S, Wang Z. Synthesis and characterization of poly(ether ketone ketone)(PEKK)/sodium sulfonated poly(arylene ether ketone)(S-PAEK) block copolymers[J].Polymer International,2001,50(7):812.
9 Derisi B, Hoa S V, Xu D, et al. Mechanical behavior of Carbon/PEKK thermoplastic composite tube under bending load[J].Journal of Thermoplastic Composite,2011,24(1):29.
10 Cao T, Yuan L, Gu A, et al. Fabrication and origin of new flame retarding bismaleimide resin system with low dielectric constant and loss based on microencapsulated hexaphenoxycyclotriphosphazene in low phosphorus content[J].Polymer Degradation and Stability,2015,121(7):157.
11 Chen X, Gu A, Liang G, et al. Novel low phosphorus-content bismaleimide resin system with outstanding flame retardancy and low dielectric loss[J].Polymer Degradation and Stability,2012,97(5):698.
12 Fallahi A, Rajabi L, Taromi F A. DSC analysis of thermosetting polyimides based on three bismaleimide resin eutectic mixtures[J].Iranian Polymer Journal,2011,20:161.
13 Wu G, Kou K, Li N, et al. Electrically conductive adhesive based on bismaleimide-triazine resin filled with microcoiled carbon fibers[J].Journal of Applied Polymer Science,2013,128(2):1164.
14 Wu Y, Zhang Q Y, Chen Y, et al. Research on modification of bismaleimide resin by polyerketone[J].Materials Review B:Research Papers,2013,27(1):65(in Chinese).
吴寅,张秋禹,陈营.聚醚酮改性双马来酰亚胺树脂的研究[J].材料导报:研究篇,2013,27(1):65.
15 Gao K, Sun B G, Yang Z Y, et al. Improvement research progress in the dielectric properties of resin matrix for wave-transparent compo-site[J].Journal of Functional Materials,2015,46(S2):44(in Chinese).
高坤,孙宝岗,杨智勇,等.透波复合材料用树脂基体介电性能的改善研究进展[J].功能材料,2015,46(S2):44.
16 Qu C Y, Zhao L W, Wang D Z. Study on bismaleimide resin containing ether and ketone groups modified by diallyl bisphenol[J].Engineering Plastics Application,2013,41(8):83(in Chinese).
曲春艳,赵立伟,王德志.二烯丙基双酚A改性醚酮结构双马来酰亚胺树脂的研究[J].工程塑料应用,2013,41(8):83.
17 Ou Q R, Ji P J, Xiao J, et al. Studied on properties of bisphenol A cyanate ester modified by epoxy resin[J].Journal of Functional Materials,2015,46(S2):129(in Chinese).
欧秋仁,嵇培军,肖军,等.环氧树脂改性双酚A型氰酸酯树脂的性能研究[J].功能材料,2015,46(S2):129.
18 Fang H Q, Liang G Z,Wang J L, et al.Development of toughening modification of cyanate ester resin[J].Materials Review,2004,18(3):47(in Chinese).
房红强,梁国正,王结良,等.氰酸酯树脂增韧改性的研究进展[J].材料导报,2004,18(3):47.
19 Shang guan J H, Liao G X, Liu C, et al. The preparation and pro-perties of PPENK modified BMI resin[J].Materials Science and Engineering,2012,28(1):89(in Chinese).
上官久桓,廖功雄,刘程,等.PPENK增韧改性BMI树脂体系的制备与性能[J].高分子材料科学与工程,2012,28(1):89.
20 Sue H J, Bertram J L, Garcia M, et al. Fracture behavior of core-shell rubber-modified crosslinkable epoxy thermoplastics[J].Colloid and Polymer Science,1994,272(4):456.
21 Zhao L, Hu X. A variable reaction order model for prediction of curing kinetics of thermosetting polymers[J].Polymer,2007,48(20):6125.
22 Qu C Y, Zhao L W, Wang D Z, et al. Bis [4-(4-maleimidephen-oxy) phenyl]-propane/N,N-4,4'-Bismaleimido-diphenylmethyene blend modified with diallyl bisphenol A[J].Journal of Applied Polymer Science,2014,131:12.
23 Kissinger H E. Reaction kinetics in differential thermal analysis[J].Analytical Chemistry,1957,29(11):1702.
24 Wei G X, Sue H J. Fracture mechanis in preformed polyphenylene oxide particle-modified bismaleimide resins[J].Journal of Applied Polymer Science,1999,74(10):2539.
25 Qin H H, Mather P T, Baek J B.et al. Modification of bisphenol-A based biamaleimide resin (BPA-BMI) with an allyl-terminated hyperbranched polyimide (AT-PAEKI)[J].Polymer,2006,47(8):2813.
[1] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[2] 姚三成, 赵海, 刘学华, 江波, 邹强, 徐康. 中碳含钒车轮钢中的晶内铁素体及其对断裂韧性的影响[J]. 材料导报, 2023, 37(22): 22050092-6.
[3] 王衍行, 李现梓, 韩韬, 肖雷, 何坤, 祖成奎. 高强高韧玻璃的研究进展[J]. 材料导报, 2022, 36(21): 20090229-7.
[4] 赵立伟, 杨海冬, 王德志, 曲春艳, 冯浩, 李洪峰, 肖万宝. 双马来酰亚胺树脂增韧改性研究进展[J]. 材料导报, 2022, 36(20): 21020082-7.
[5] 杜金平, 王衍飞, 刘荣军, 万帆. 铁弹畴转向增韧:应用于陶瓷涂层的一种潜在高温增韧机制[J]. 材料导报, 2022, 36(17): 21050180-10.
[6] 王斌, 孙顺平, 王洪金, 李小平, 雷卫宁. 电弧熔覆ZrO2颗粒增韧对硅化钼涂层的组织及力学性能的影响[J]. 材料导报, 2022, 36(13): 21040249-6.
[7] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[8] 朱若星, 赵廷凯, 折胜飞, 李铁虎. 螺旋型非晶态碳纳米管/双马来酰亚胺树脂(HACNT/BMI)复合材料的制备及吸波机理[J]. 材料导报, 2021, 35(10): 10216-10220.
[9] 刘二伟, 贾文清, 薛飞, 范敏郁, 於旻, 余伟炜. 基于PCVN小试样评估主管道的动态断裂韧性研究[J]. 材料导报, 2020, 34(Z2): 418-422.
[10] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[11] 姚三成, 丁毅, 赵海, 江波, 刘学华, 方政. 中碳微合金钢的断裂韧性与显微组织的关系[J]. 材料导报, 2020, 34(Z1): 452-456.
[12] 文立伟, 余坤, 封桥桥, 宦华松. 缝合增强复合材料层合板层间断裂韧性研究[J]. 材料导报, 2020, 34(22): 22162-22166.
[13] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[14] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[15] 汪倡, 庞学佳, 高宗鸿, 刘金娜, 房永超, 崔秀芳, 刘二宝, 金国. YSZ纤维增强等离子喷涂Al2O3/8YSZ涂层耐磨性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 563-568.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed