Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1475-1482    https://doi.org/10.11896/cldb.18030145
  无机非金属及其复合材料 |
荧光碳量子点:合成、特性及在肿瘤治疗中的应用
杨焜1, 王春来1, 丁晟1, 刘长军1,2, 田丰1, 李钒1
1 军事科学院卫勤保障技术研究所,天津 300161
2 国家生物防护装备工程技术研究中心,天津 300161
A State-of-the-art Review on Fluorescent Carbon Quantum Dots: Fabrication,Characterization and Potential in Cancer Therapy
YANG Kun1, WANG Chunlai1, DING Sheng1, LIU Changjun1,2, TIAN Feng1, LI Fan1
1 Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161
2 National Engineering Research Center for Biological Protective Equipment, Tianjin 300161
下载:  全 文 ( PDF ) ( 0KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳量子点是一种以碳元素为主要成分的新型荧光碳纳米材料。碳量子点是纳米材料的一员,具备纳米材料所共有的表面和界面效应,因而表面非常活跃,易于功能化修饰;纳米材料具有小尺寸效应和量子尺寸效应,使得碳量子点具有优异的荧光性能,荧光量子产率高、稳定性强、光谱可控;另外,碳量子点的水溶性优良,碳元素的构成保证了碳量子点的低细胞毒性和良好的生物相容性,极小的粒径和分子量也有利于其在生物体内的应用。这些突出的性能使得碳量子点在肿瘤体外检测、体内成像、肿瘤靶向载体与治疗等领域中都有重要的应用价值。仅从肿瘤治疗方面而言,碳量子点在许多传统和新兴的肿瘤治疗方法中都有很多深层次的应用。
纳米药物载体技术是大部分学者利用碳量子点来改善化学治疗过程最常用的手段。它是将纳米材料作为基本单元,通过物理和化学等手段将药物连接、吸附或者包裹在纳米材料上,利用载体的特殊性能来实现更好的抑癌效果。而碳量子点诸多的优良性能也使其在化学治疗过程中有非常多的应用,包括:(1)改善药物的水溶性,以提升治疗效果;(2)提高药物对病灶处的靶向性,降低对正常细胞的危害;(3)延长药物在人体内的滞留时间;(4)实现药物智能高效释放等。这些复合载药体系具有特异性、靶向性、定量准确、易吸收等特点,可以有效提高治疗效果。
此外,碳量子点的光热转化特性、光致发光特性也使得其在光热治疗和光动力治疗等新兴治疗方法中有所应用。光热治疗提高了热疗过程中的安全性和高效性;碳量子点在光动力治疗应用中,可以显著改善光敏剂水溶性差、荧光量子产率低、光源穿透深度不够、癌变组织氧气供应不足等应用难题,为深层肿瘤治疗提供了研究思路。多种方式的协同治疗也可以将治疗效果提升至最大化。
本文归纳了碳量子点的合成方法以及新的制备工艺的发展趋势,总结了碳量子点在肿瘤治疗中所具有的优良性能,并着重介绍了碳量子点在光动力治疗、光热治疗和化疗等肿瘤治疗领域中的前沿应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨焜
王春来
丁晟
刘长军
田丰
李钒
关键词:  碳量子点  荧光  纳米材料  肿瘤治疗    
Abstract: Carbon quantum dots (CDs or C-dots) are novel fluorescent nano-materials mainly composed of carbon. As a member of nanomaterials, CDs show the common surface and interface effects, hence the surface of CDs is greatly active and prone to be modified. Thanks to the small size effect and quantum size effect, CDs are also endowed with excellent fluorescence performance, exhibiting high quantum yield, stability and controllable properties. In addition, the excellent water solubility, low cytotoxicity, satisfactory biocompatibility, small particle size and molecular weight are favorable for the application of CDs in vivo. The above mentioned outstanding properties of CDs enable the widespread applications of CDs in diverse fields, including tumor imaging, detection, targeting and therapy. Just from the perspective of tumor therapy, the applications of CDs have deeply penetrated in traditional and emerging approaches already.
Taking advantages of CDs, researchers commonly employ nano-drug delivery system to optimize the chemotherapy. It uses nanomaterials as the basic unit, then the drugs are absorbed or encapsulated onto the nano-carriers through physical or chemical connection, and finally to achieve a better anticancer effect by the special properties of nano-carriers. Accordingly, CDs play a significant role in chemotherapy process due to their excellent performance. Specifically speaking, CDs can enhance the therapeutic effect by improving the water solubility of drug, reduce the da-mage of drugs to the normal cells by improving the targeting ability to the lesion, prolong the retention time of the drug, and realize the intelligent and efficient drug release.
Furthermore, the characteristic of photothermal conversion and photoluminescence properties of CDs have also paved the way for extensive application of CDs in many emerging therapeutic approaches, such as photothermal therapy and photodynamic therapy. As regard to hyperthermia treatment, CDs can significantly improve the safety and efficiency. In photodynamic therapy, CDs contribute to improve the solubility, quantum yield of photosensitizer, penetration depth of light source and oxygen supply around cancerous tissue. The CDs in multiple treatments can also boost the therapeutic effect to the maximum.
In this article, we introduce the synthesis approaches and latest progress in CDs preparation, summarize the excellent properties of CDs in tumor therapy, and put emphasis on frontier application of CDs in cancer therapy including photodynamic therapy, photothermal therapy and chemotherapy.
Key words:  carbon dots    fluorescent    nano-materials    cancer therapy
                    发布日期:  2019-05-08
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(51502345);天津市自然科学基金(16JCQNJC03100)
通讯作者:  vanadium_1981@163.com   
作者简介:  李钒,博士,军事科学院卫勤保障技术研究所高级工程师,主要从事碳纳米材料在荧光标记、光能转化、光催化等方面的应用基础研究。负责国家自然科学基金、天津市自然科学基金以及军队各类项目10余项。杨焜,2013年6月毕业于天津大学,获得工学学士学位。现为军事科学院卫勤保障技术研究所在读博士研究生。目前主要从事碳纳米材料的相关研究。
引用本文:    
杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
YANG Kun, WANG Chunlai, DING Sheng, LIU Changjun, TIAN Feng, LI Fan. A State-of-the-art Review on Fluorescent Carbon Quantum Dots: Fabrication,Characterization and Potential in Cancer Therapy. Materials Reports, 2019, 33(9): 1475-1482.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030145  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1475
1 Du F, Zhang L, Zhang L, Zhang M, et al. Biomaterials,2017,121,109.
2 Yan P, Ai F R, Yan X L, et al. Materials Review A:Review Papers,2017,31(10),35(in Chinese).
闫鹏,艾凡荣,严喜鸾,等.材料导报:综述篇,2017,31(10),35.
3 Tuerhong M, Xu Y, Yin X B. Chinese Journal of Analytical Chemistry,2017,45,139.
4 Che W Y, Liu C J, Yang K, et al. Acta Materiae Compositae Sinica,2016,33(3),431(in Chinese).
车望远,刘长军,杨焜,等.复合材料学报,2016,33(3),431.
5 Qiao Z A, Wang Y, Gao Y, et al. Chemical Communications,2010,46(46),8812.
6 Peng J, Gao W, Gupta B K, et al. Nano Letters,2012,12(2),844.
7 Shinde D B, Pillai V K. Chemistry—A European Journal,2012,18(39),12522.
8 Wang X, Qu K, Xu B, et al. Journal of Materials Chemistry,2011,21(8),2445.
9 Yang K, Li F, Che W, et al. RSC Advances,2016,6(103),101447.
10Bourlinos A B, Stassinopoulos A, Anglos D, et al. Chemistry of Mate-rials,2008,20(14),4539.
11Pei S, Zhang J, Gao M, et al. Journal of Colloid and Interface Science,2015,439,129.
12Mehta V N, Jha S, Kailasa S K. Materials Science and Engineering: C,2014,38,20.
13Zhang Z, Hao J, Zhang J, et al. RSC Advances,2012,2(23),8599.
14Mandani S, Dey D, Sharma B, et al. Carbon,2017,119,569.
15Liu W, Diao H, Chang H, et al. Sensors and Actuators B: Chemical,2017,241,190.
16Qu D, Miao X, Wang X, et al. Journal of Materials Chemistry B,2017,5,4988.
17Shi W, Guo F, Han M, et al. Journal of Materials Chemistry B,2017,5,3293.
18Li C, Zhu Y, Zhang X, et al. RSC Advances,2012,2(5),1765.
19Jiang K, Sun S, Zhang L, et al. ACS Applied Materials & Interfaces,2015,7,23231.
20Ding H, Ji Y, Wei J S, et al. Journal of Materials Chemistry B,2017,5,5272.
21Zhang Y, Liu X, Fan Y, et al. Nanoscale,2016,8,15281.
22Liu X, Yang C, Zheng B, et al. Sensors and Actuators B: Chemical,2018,255,572.
23Baker S, Baker G. Angewandte Chemie International Edition,2010,49(38),6726.
24Li H, He X, Kang Z, et al. Angewandte Chemie International Edition,2010,49(26),4430.
25Kwon W, Rhee S. Chemical Communications,2012,48(43),5256.
26Liu H, Ye T, Mao C. Angewandte Chemie International Edition,2007,46(34),6473.
27Yu P, Wen X, Toh Y, et al. The Journal of Physical Chemistry C,2012,116(48),25552.
28Ensafi A A, Hghighat Sefat S, et al. Sensors and Actuators B: Chemical,2017,253,451.
29Han B, Wang W, Wu H, et al. Colloids and Surfaces B: Biointerfaces,2012,100,209.
30Zhong Y, Li J, Jiao Y, et al. Journal of Luminescence,2017,190,188.
31Li S, Amat D, Peng Z, et al. Nanoscale,2016,8(37),16662.
32Pandey S, Thakur M, Mewada A, et al. Journal of Materials Chemistry B,2013,1(38),4972.
33Gao N, Yang W, Nie H, et al. Biosensors and Bioelectronics,2017,96,300.
34Jia X, Li J, Wang E. Nanoscale,2012,4(18),5572.
35Wang H, Shen J, Li Y, et al. Biomaterials Science,2014,2(6),915.
36Lan M, Zhao S, Zhang Z, et al. Nano Research,2017,10(9),3113.
37Zhang M, Yuan P, Zhou N, et al. RSC Advances,2017,7(15),9347.
38Liu J, Huang Y, Kumar A, et al. Biotechnology Advances,2014,32(4),693.
39Dolmans D E, Fukumura D, Jain R K. Nature Reviews Cancer,2003,3(5),380.
40Zhang Y, Wang F, Liu C, et al. ACS Nano,2018,12(1),651.
41Garg A D, Krysko D V, Vandenabeele P, et al. Cancer Immunology, Immunotherapy,2018,67(7),1179.
42Huang P, Lin J, et al. Advanced Materials,2012,24(37),5104.
43Yang K, Li F, Che W, et al. RSC Advances,2016,6(103),101447.
44Fowley C, Nomikou N, McHale A, et al. Chemical Communications,2013,49(79),8934.
45Wang J, Zhang Z, Zha S, et al. Biomaterials,2014,35(34),9372.
46Zhao N, Wu B, Hu X, et al. Biomaterials,2017,141,40.
47Zhang Y, Pang L, et al. Analytical Chemistry,2014,86,3092.
48Xu J, Zeng F, Wu H, et al. Journal of Materials Chemistry B,2015,3(24),4904.
49Fowley C, McHale A, McCaughan B, et al. Chemical Communications,2015,51(1),81.
50Ge J, Jia Q, Liu W, et al. Advanced Materials,2015,27(28),4169.
51Ge J, Jia Q, et al. Advanced Healthcare Materials,2016,5(6),665.
52Tang J, Kong B, et al. Advanced Materials,2013,25(45),6569.
53Wang H, Di J, Sun Y, Fu J, et al. Advanced Functional Materials,2015,25(34),5537.
54Wang H, Mukherjee S, et al. ACS Applied Materials & Interfaces,2017,9,18639.
[1] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[2] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[3] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[6] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[7] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[8] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[9] 卢伶,张祥,赵青华. 热激活延迟荧光材料在有机电致发光器件中的研究进展[J]. 材料导报, 2019, 33(15): 2589-2601.
[10] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[11] 许萍, 任恒阳, 魏智刚, 汪长征. 碳钢表面混合与单种细菌腐蚀作用对比研究[J]. 材料导报, 2019, 33(12): 2055-2061.
[12] 吴美容, 赖琼宇, 周佳, 倪赟, 吴琼, 张承武, 于海东, 李林. 基于荧光法纸基器件在体外疾病检测中的应用进展[J]. 材料导报, 2019, 33(1): 48-55.
[13] 张腾, 唐天宇, 侯仰龙. 面向锂硫电池的高负载量碳硫复合正极材料研究进展[J]. 材料导报, 2019, 33(1): 90-102.
[14] 刘云子,张伟,宋占永. 金属纳米颗粒导电墨水制备与后处理工艺的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 391-397.
[15] 管庆顺,李建,宋如愿,徐朝阳,吴伟兵,景宜,戴红旗,房桂干. 基于纳米材料的气凝胶制备及应用[J]. 《材料导报》期刊社, 2018, 32(3): 384-390.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed