Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 41-52    https://doi.org/10.11896/j.issn.1005-023X.2017.017.007
  材料综述 |
石墨烯基复合材料的三维组装与应用研究进展*
王开丽, 董珂琪, 王海波, 王维, 李楠, 徐志伟, 吕汉明, 匡丽赟
天津工业大学纺织学院,天津 300387
Preparation and Application of 3D Graphene-based Composites:a Review
WANG Kaili, DONG Keqi, WANG Haibo, WANG Wei, LI Nan, XU Zhiwei, LU Hanming, KUANG Liyun
College of Textiles, Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 2400KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三维石墨烯结构体不仅继承了二维石墨烯片完美的碳晶体结构,还展现出超低的密度、极高的孔隙率和较大的比表面积等特点,具有导电、导热、吸附等优异性能,是近年来石墨烯功能材料中的一颗新星。目前,石墨烯与聚合物、无机纳米材料组装成三维结构复合材料的研究已经取得了实质性进展,研究者通过丰富的化学和物理路径实现了石墨烯与功能组分的三维有序组装,并赋予该材料奇特的结构特点和性能优势。这些特性使材料在能量储存、环境保护、传感器等研究领域表现出不错的应用前景。根据当前研究热点,综述了石墨烯基复合材料的三维组装与应用的研究进展,包括三维石墨烯/聚合物复合材料与三维石墨烯/无机纳米复合材料两种体系。重点总结了两种体系的三维组装方法,并分析了复合材料中石墨烯与功能组分的结构特点,简要概括了当前三维石墨烯基复合材料在环境保护、超级电容器等不同领域的应用进展,并对三维石墨烯基复合材料的三维结构设计与多样化应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王开丽
董珂琪
王海波
王维
李楠
徐志伟
吕汉明
匡丽赟
关键词:  石墨烯  复合材料  三维组装    
Abstract: 3D graphene materials not only inherits perfect carbon crystal structure of 2D graphene sheet, but also shows unique structural characteristics, including ultra-low density, high porosity, large specific surface area, and so forth. 3D graphene has become a new star in functional materials field in recent years because of its excellent performance involving electrical, thermal, and adsorption properties. At present, the studies of 3D graphene-based polymer composites or 3D graphene/inorganic nano compo-sites have made a substantial progress. Researchers have realized 3D well-aligned and controlled assembly between graphene and functional component via abundant physical and chemical route. With the unique structure and excellent performance, 3D graphene-based composites show great potential in energy storage, environmental protection, sensor, etc. This article reviews recent progress in preparation and application of 3D graphene-based composites, involving the 3D graphene/polymer composites system and the 3D graphene/inorganic nano composites system. 3D assembly methods of the two systems are summarized, and the structural features of the composites are analyzed. The application progress of 3D graphene-based composites is briefly introduced. Finally, the development prospect of 3D structure design and diverse applications in the future are also proposed.
Key words:  graphene    composites    3D assembly
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  TB33  
基金资助: 国家自然科学基金(11575126;51502202);天津市自然科学基金(16JCZDJC37800)
通讯作者:  徐志伟:通讯作者,男,1978年生,教授,博士研究生导师,主要从事碳基复合材料的结构设计 E-mail:xuzhiwei@tjpu.edu.cn   
作者简介:  王开丽:女,1992年生,硕士研究生,从事三维石墨烯复合材料的研究 E-mail:wangkaili920823@163.com
引用本文:    
王开丽, 董珂琪, 王海波, 王维, 李楠, 徐志伟, 吕汉明, 匡丽赟. 石墨烯基复合材料的三维组装与应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 41-52.
WANG Kaili, DONG Keqi, WANG Haibo, WANG Wei, LI Nan, XU Zhiwei, LU Hanming, KUANG Liyun. Preparation and Application of 3D Graphene-based Composites:a Review. Materials Reports, 2017, 31(17): 41-52.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.007  或          http://www.mater-rep.com/CN/Y2017/V31/I17/41
1 Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature,2007,446(7131):60.
2 Fasolino A, Los J H, Katsnelson M I. Intrinsic ripples in graphene[J]. Nat Mater,2007,6(11):858.
3 Reina A, Jia X T, Ho J,et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett,2009,9(1):30.
4 Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic pro-perties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
5 Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett,2008,8(3):902.
6 Xu Y X, Sheng K X, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano,2010,4(7):4324.
7 Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nat Mater,2011,10(6):424.
8 Shi J L, Wang H F, Zhu X L, et al. The nanostructure preservation of 3D porous graphene: New insights into the graphitization and surface chemistry of non-stacked double-layer templated graphene after high-temperature treatment[J]. Carbon,2016,103:36.
9 Li Y R, Chen J, Huang L, et al. Highly compressible macroporous graphene monoliths via an improved hydrothermal process[J]. Adv Mater,2014,26(28):4789.
10 Niu Z Q, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Adv Mater,2012,24(30):4144.
11 Yang X W, Zhu J W, Qiu L, et al. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next ge-neration of high-performance supercapacitors[J]. Adv Mater,2011,23(25):2833.
12 Li C, Shi G Q. Functional gels based on chemically modified graphenes[J]. Adv Mater, 2014,26(24):3992.
13 Hu H, Zhao Z B, Wan W B, et al. Polymer/graphene hybrid aerogel with high compressibility, conductivity, and "sticky" superhydrophobicity[J]. ACS Appl Mater Interfaces,2014,6(5):3242.
14 Tang G Q, Jiang Z G, Li X F, et al. Three dimensional graphene aerogels and their electrically conductive composites[J]. Carbon,2014,77:592.
15 Chabot V, Higgins D, Yu A P, et al. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment[J]. Energy Environ Sci,2014,7(5):1564.
16 Wan W B, Li L L, Zhao Z B, et al. Ultrafast fabrication of covalently cross-linked multifunctional graphene oxide monoliths[J]. Adv Funct Mater,2014,24(31):4915.
17 Bai H, Li C, Wang X L, Shi G Q. On the gelation of graphene oxide[J]. J Phys Chem C, 2011,115(13):5545.
18 Vickery J L, Patil A J, Mann S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures[J]. Adv Mater,2009,21(21):2180.
19 Tao Y, Kong D B, Zhang C, et al. Monolithic carbons with spheroidal and hierarchical pores produced by the linkage of functionalized graphene sheets[J]. Carbon,2014,69:169.
20 Wang Y, Fugetsu B, Sakata I, et al. Morphology-controlled fabrication of a three-dimensional mesoporous poly(vinyl alcohol) monolith through the incorporation of graphene oxide[J]. Carbon,2016,98:334.
21 Feng R C, Zhou W, Guan G H, et al. Surface decoration of graphene by grafting polymerization using graphene oxide as the initiator[J]. J Mater Chem,2012,22(9):3982.
22 Glover A J, Cai M Z, Overdeep K R, et al. In situ reduction of graphene oxide in polymers[J]. Macromolecules,2011,44(24):9821.
23 Marsano E, Bianchi E. A new class of hydrogels based on hydroxypropylcellulose and polyvinylpyrrolidone[J]. Polymer,2002,43(11):3371.
24 Wang C, Duan Y P, Zacharia N S, et al. A family of mechanically adaptive supramolecular graphene oxide/poly(ethylenimine) hydrogels from aqueous assembly[J]. Soft Matter, 2017,13(6):1161.
25 Xu Y X, Wu Q O, Sun Y Q, et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels[J]. ACS Nano,2010,4(12):7358.
26 Chen Y P, Qi Y Y, Yan X B, et al. Green fabrication of porous chitosan/graphene oxide composite xerogels for drug delivery[J]. J Appl Polym Sci,2014,131(6):11.
27 Ouyang W Z, Sun J H, Memon J, et al. Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors[J]. Carbon,2013,62:501.
28 Wan Y Z, Chen X Q, Xiong G Y, et al. Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties[J]. Mater Express,2014,4(5):429.
29 Xu Y X, Lin Z Y, Zhong X, et al. Solvated graphene frameworks as high-performance anodes for lithium-ion batteries[J]. Angew Chem Int Ed,2015,54(18):5345.
30 Xu Y X, Lin Z Y, Huang X Q, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS Nano,2013,7(5):4042.
31 Xu Y X, Lin Z Y, Huang X Q, et al. Functionalized graphene hydrogel-based high-performance supercapacitors[J]. Adv Mater,2013,25(40):5779.
32 Zhao Y W, Zhang Y J, Liu A R, et al. Construction of three-dimensional hemin-functionalized graphene hydrogel with high mechanical stability and adsorption capacity for enhancing photodegradation of methylene Blue[J]. ACS Appl Mater Interfaces,2017,9(4):4006.
33 Song B, Zhao J X, Wang M J, et al. Systematic study on structural and electronic properties of diamine/triamine functionalized graphene networks for supercapacitor application[J]. Nano Energy,2017,31:183.
34 Ye S B, Feng J C. Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors[J]. ACS Appl Mater Interfaces,2014,6(12):9671.
35 Liu X B, Shang P B, Zhang Y B, et al. Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes[J]. J Mater Chem A,2014,2(37):15273.
36 Hu N T, Zhang L L, Yang C, et al. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: An excellent structure for high-performance flexible solid-state supercapacitors[J]. Sci Rep,2016,6:10.
37 Yang F, Xu M W, Bao S J, et al. Self-assembled hierarchical graphene/polyaniline hybrid aerogels for electrochemical capacitive energy storage[J]. Electrochim Acta,2014,137:381.
38 Wang J D, Peng T J, Xian H Y,et al. Preparation and supercapacitive performance of three-dimensional reduced graphene oxide/polyaniline composite[J]. Acta Phys-Chim Sin,2015,31(1):90(in Chinese).
汪建德,彭同江,鲜海洋,等. 三维还原氧化石墨烯/聚苯胺复合材料的制备及其超级电容性能[J]. 物理化学学报,2015,31(1):90.
39 Gu X Y, Yang Y, Hu Y, et al. Facile fabrication of graphene-polypyrrole-Mn composites as high-performance electrodes for capacitive deionization[J]. J Mater Chem A, 2015,3(11):5866.
40 Zhou Q Q, Li Y R, Huang L, et al. Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors[J]. J Mater Chem A,2014,2(41):17489.
41 Shen W Z, Wang Y M, Yan J, et al. Enhanced electrochemical performance of lithium iron(Ⅱ) phosphate modified cooperatively via chemically reduced graphene oxide and polyaniline[J]. Electrochim Acta,2015,173:310.
42 Sun R, Chen H Y, Li Q W, et al. Spontaneous assembly of strong and conductive graphene/polypyrrole hybrid aerogels for energy sto-rage[J]. Nanoscale,2014,6(21):12912.
43 Munoz R, Gomez-Aleixandre C. Review of CVD synthesis of graphene[J]. Chem Vapor Deposition,2013,19(10-12):297.
44 Min B H, Kim D W, Kim K H, et al. Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode[J]. Carbon,2014,80:446.
45 Wang Z Y, Shen X, Garakani M A, et al. Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties[J]. ACS Appl Mater Interfaces,2015,7(9):5538.
46 Ni Y, Chen L, Teng K Y, et al. Superior mechanical properties of epoxy composites reinforced by 3D interconnectedgraphene skeleton[J]. ACS Appl Mater Interfaces, 2015,7(21):11583.
47 Abdulhakeem B, Farshad B, Damilola M, et al. Morphological cha-racterization and impedance spectroscopy study of porous 3D carbons based on graphene foam-PVA/phenol-formaldehyde resin composite as an electrode material for supercapacitors[J]. RSC Adv,2014,4(73):39066.
48 Jia J J, Sun X Y, Lin X Y, et al. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxycomposites[J]. ACS Nano,2014,8(6):5774.
49 Zhang Q Q, Xu X, Li H, et al. Mechanically robust honeycomb graphene aerogel multifunctional polymer composites[J]. Carbon,2015,93:659.
50 Li Y Q, Samad Y A, Polychronopoulou K, et al. Highly electrically conductive nanocomposites based on polymer-infused graphene sponges[J]. Sci Rep,2014,4:6.
51 Wan Y J, Yu S H, Yang W H, et al. Tuneable cellular-structured 3D graphene aerogel and its effect on electromagnetic interference shielding performance and mechanical properties of epoxy composites[J]. RSC Adv,2016,6(61):56589.
52 Choi J, Reddy D A, Islam M J, et al. Self-assembly of CeO2 nanostructures/reduced graphene oxide composite aerogels for efficient photocatalytic degradation of organic pollutants in water[J]. J Alloys Compd,2016,688:527.
53 Zhang N S, Fu C P, Liu D, et al. Three-dimensional pompon-like MnO2/graphene hydrogel composite for supercapacitor[J]. Electrochim Acta,2016,210:804.
54 Shi X R, Chen J, Wang W X, et al. Effects of TiO2 content on the microstructure, mechanical properties and photocatalytic activity of three dimensional TiO2-graphene composite prepared by hydrothermal reaction[J]. Mater Res Express,2016,3(7):1.
55 Wu Z S, Yang S B, Sun Y, et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient eletrocatalysts for the oxygen reduction reaction[J]. J Am Chem Soc,2012,134(22):9082.
56 Tang Z H, Shen S L, Zhuang J, et al. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide[J]. Angew Chem Int Ed,2010,49(27):4603.
57 Chen S, Duan J J, Jaroniec M, et al. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution[J]. Angew Chem Int Ed,2013,52(51):13567.
58 Huang Y S, Wu D Q, Han S, et al. Assembly of tin oxide/graphene nanosheets into 3D hierarchical frameworks for high-performance lithium storage[J]. Chemsuschem,2013,6(8):1510.
59 Wang R H, Xu C H, Sun J,et al. Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage[J]. ACS Appl Mater Interfaces,2014,6(5):3427.
60 Liu X W, Cheng J X, Li W H, et al. Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite[J]. Nanoscale,2014,6(14):7817.
61 Tan C H, Cao J, Khattak A M, et al. High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for li-thium-ion batteries[J]. J Power Sources,2014,270:28.
62 Zhang W H, Sun Y Y, Liu T T, et al. Preparation of graphene foam with high performance by modified self-assembly method[J]. Appl Phys A—Mater Sci Process,2016,122(3):259.
63 Ruoff R. A means to an end[J]. Nature,2012,483(7389):S42.
64 Wang W N, Jiang Y, Biswas P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: Confinement force relationship[J]. J Phys Chem Lett,2012,3(21): 3228.
65 Ma X F, Zachariah M R, Zangmeister C D. Reduction of suspended graphene oxide single sheet nanopaper: The effect of crumpling[J]. J Phys Chem C,2013,117(6):3185.
66 Luo J Y, Jang H D, Sun T,et al. Compression and aggregation-resistant particles of crumpled soft sheets[J]. ACS Nano,2011,5(11):8943.
67 Chen Y T, Guo F, Jachak A, et al. Aerosol synthesis of cargo-filled graphene nanosacks[J]. Nano Lett,2012,12(4):1996.
68 Chen Y T, Guo F, Qiu Y, et al. Encapsulation of particle ensembles in graphene nanosacks as a new route to multifunctional materials[J]. ACS Nano,2013,7(5):3744.
69 Jang H D, Kim S K, Chang H, et al. One-step synthesis of Pt-nanoparticles-laden graphene crumples by aerosol spray pyrolysis and evaluation of their electrocatalytic activity[J]. Aerosol Sci Technol,2013,47(1):93.
70 Jiang Y, Wang W N, Biswas P, et al. Facile aerosol synthesis and characterization of ternary crumpled graphene-TiO2-magnetite nanocomposites for advanced water treatment[J]. ACS Appl Mater Interfaces,2014,6(14):11766.
71 Luo J Y, Zhao X, Wu J S, et al. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes[J]. J Phys Chem Lett,2012,3(13):1824.
72 Mao S, Wen Z H, Kim H, et al. A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications[J]. ACS Nano,2012,6(8):7505.
73 Bo Z, Yang Y, Chen J H, et al. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets[J]. Nanoscale,2013,5(12):5180.
74 Chen K W, Chen L B, Chen Y Q, et al. Three-dimensional porous graphene-based composite materials: Electrochemical synthesis and application[J]. J Mater Chem,2012,22(39):20968.
75 Davami K, Shaygan M, Kheirabi N, et al. Synthesis and characte-rization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition[J]. Carbon,2014,72:372.
76 Seo D H, Han Z J, Kumar S, et al. Structure-controlled, vertical graphene-based, binder-free electrodes from plasma-reformed butter enhance supercapacitor performance[J]. Adv Energy Mater,2013,3(10):1316.
77 Oliveira A G, Nascimento J P, Gorgulho H D, et al. Electrochemical synthesis of TiO2/graphene oxide composite films for photocatalytic applications[J]. J Alloys Compd, 2016,654:514.
78 Si P, Dong X C, Chen P, et al. A hierarchically structured compo-site of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors[J]. J Mater Chem B,2013,1(1):110.
79 Wang H L, Casalongue H S, Liang Y Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J]. J Am Chem Soc,2010,132(21):7472.
80 Periasamy A P, Wu W P, Ravindranath R, et al. Polymer/reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery[J]. Marine Pollution Bull,2017,114(2):888.
81 Li H, Liu L F, Yang F L. Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup[J]. J Mater Chem A,2013,1(10):3446.
82 Cheng J S, Du J, Zhu W J. Facile synthesis of three-dimensional chitosan-graphene mesostructures for reactive black 5 removal[J]. Carbohydrate Polym,2012,88(1):61.
83 Zhang S, Shao Y Y, Liu J, et al. Graphene-polypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchanger for removing ClO4- from wastewater[J]. ACS Appl Mater Interfaces,2011,3(9):3633.
84 Yang X W, Cheng C, Wang Y F, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science,2013,341(6145):534.
85 Dong X C, Wang X W, Wang L, et al. Synthesis of a MnO2-graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode[J]. Carbon, 2012,50(13):4865.
86 Choi B G, Yang M, Hong W H, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities[J]. ACS Nano,2012,6(5):4020.
87 Wang J D, Xian H Y, Peng T J, et al. Three-dimensional graphene-wrapped PANI nanofiber composite as electrode material for supercapacitors[J]. RSC Adv,2015,5(18):13607.
88 Qin J, He C N, Zhao N Q, et al. Graphene networks anchored with Sn@graphene as lithium lon battery anode[J]. ACS Nano,2014,8(2):1728.
89 An Q Y, Li Y F, Yoo H D, et al. Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery catho-des[J]. Nano Energy,2015,18:265.
90 Cao X H, Zeng Z Y, Shi W H, et al. Three-dimensional graphene network composites for detection of hydrogen peroxide[J]. Small,2013,9:1703.
91 Dong X C, Xu H, Wang X W, et al. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano,2012,6(4):3206.
92 Zhang J J, Li R Y, Li Z J, et al. Synthesis of nitrogen-doped activated graphene aerogel/gold nanoparticles and its application for electrochemical detection of hydroquinone and o-dihydroxybenzene[J]. Nanoscale,2014,6(10):5458.
93 Mao S, Wen Z H, et al. High-performance bi-functional electrocatalysts of 3D crumpled graphene-cobalt oxide nanohybrids for oxygen reduction and evolution reactions[J]. Energy Environ Sci,2014,7(2):609.
94 Zhang H, Lv X J, Li Y M, et al. P25-graphene composite as a high performance photocatalyst[J]. ACS Nano,2010,4(1):380.
95 Han W J, Ren L, Gong L J, et al. Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities[J]. ACS Sustainable Chem Eng,2014,2(4):741.
96 Qin Y Y, Peng Q Y, Ding Y J, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS Nano, 2015,9(9):8933.
97 Javadi A, Zheng Q F, Payen F, et al. Polyvinyl alcohol-cellulose nanofibrils-graphene oxide hybrid organic aerogels[J]. ACS Appl Mater Interfaces,2013,5(13):5969.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[11] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[12] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[13] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[14] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[15] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed