Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1582-1586    https://doi.org/10.11896/j.issn.1005-023X.2018.10.002
  材料研究 |
Sr、Co共掺多铁性材料BiFeO3的性能
熊建功1,张创伟1,王 康1,孔令仪2,赵弋菲3,陈 龙3,李永涛1,3
1 南京邮电大学电子科学与工程学院,南京 210023;
2 南京邮电大学通信与信息工程学院,南京 210023;
3 南京邮电大学理学院,南京 210023
Property of Sr and Co Codoped Multiferroic Material BiFeO3
XIONG Jiangong1, ZHANG Chuangwei1, WANG Kang1, KONG Lingyi2,ZHAO Yifei3, CHEN Long3, LI Yongtao1,3
1 College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023;
2 School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023;
3 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023
下载:  全 文 ( PDF ) ( 3140KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用溶胶-凝胶法制备了BiFeO3、Bi0.95Sr0.05FeO3、BiFe0.95Co0.05O3和Bi0.95Sr0.05Fe0.95Co0.05O3样品,并对样品的结构、形态、元素含量、铁电性和铁磁性进行了研究。结果表明,共掺杂样品Bi0.95Sr0.05Fe0.95Co0.05O3的晶体结构发生了变化,铁电性明显增强,但漏电流变大;Bi0.95Sr0.05FeO3、BiFe0.95Co0.05O3样品的磁性都有所增强,但Bi0.95Sr0.05Fe0.95Co0.05O3样品的磁性并没有随着Sr和Co的共同掺杂而进一步提高,从氧空位浓度、Fe-O共价键结构的变化和晶体尺寸三个方面对产生这种现象的原因进行了分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊建功
张创伟
王 康
孔令仪
赵弋菲
陈 龙
李永涛
关键词:  多铁性材料  铁电性  铁磁性  拉曼光谱    
Abstract: BiFeO3, Bi0.95Sr0.05FeO3, BiFe0.95Co0.05O3 and Bi0.95Sr0.05Fe0.95Co0.05O3 samples were prepared by sol-gel method and the structure, morphology, element content, ferroelectricity and ferromagnetism of the samples were investigated. The results manifested that the crystal structure of Bi0.95Sr0.05Fe0.95Co0.05O3 had been changed and the ferroelectricity enhanced dramatically, but the leakage current of it was also larger. Simultaneously, it demonstrated that the magnetic properties of Bi0.95Sr0.05FeO3 and BiFe0.95Co0.05O3 were increased more or less. But the magnetic properties of Bi0.95Sr0.05Fe0.95Co0.05O3 was constant with Sr and Co codoped. The reason for this phenomenon were analyzed by comparing oxygen vacancy concentration, the difference between Fe-O covalent bond structures and the different size of the crystals for all the samples.
Key words:  multiferroic material    ferroelectric    ferromagnetism    Raman spectroscopy
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  O469  
基金资助: 国家自然科学基金(51372119);南京邮电大学科研项目(NY217096;NY214014);大学生创新创业训练计划
作者简介:  熊建功:男,1991年生,硕士,主要从事材料物理特性研究 E-mail:15082906530@163.com 李永涛:通信作者,男,1977年生,博士,副教授,主要从事多铁材料微结构及磁性研究 E-mail:liyt@njupt.edu.cn
引用本文:    
熊建功,张创伟,王 康,孔令仪,赵弋菲,陈 龙,李永涛. Sr、Co共掺多铁性材料BiFeO3的性能[J]. 《材料导报》期刊社, 2018, 32(10): 1582-1586.
XIONG Jiangong, ZHANG Chuangwei, WANG Kang, KONG Lingyi,ZHAO Yifei, CHEN Long, LI Yongtao. Property of Sr and Co Codoped Multiferroic Material BiFeO3. Materials Reports, 2018, 32(10): 1582-1586.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.002  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1582
1 Hans Schmid. Multi-ferroic magnetoelectrics[J]. Ferroelectrics,1994,162(1):317.
2 Ramesh R. Materials science: Emerging routes to multiferroics[J]. Nature,2009,461(7268):1218.
3 Chu Y H, Martin L W, Holcomb M B, et al. Controlling magnetism with multiferroics [J]. Materials Today,2007,10(10):16.
4 Bucci J D, Robertson B K, James W J. The precision determination of the lattice parameters and the coefficients of thermal expansion of BiFeO3 [J]. Journal of Applied Crystallography,1972,5(3):187.
5 Sharma P, Verma V. Structural, magnetic and electrical properties of La and Mn co-substituted BiFeO3 samples prepared by the sol-gel technique [J]. Journal of Magnetism and Magnetic Materials,2015,374:18.
6 Dai H, Li T, Chen Z, et al. Studies on the structural, electrical and magnetic properties of Ce-doped BiFeO3 ceramics [J]. Journal of Alloys and Compounds,2016,672:182.
7 Verma V, Beniwal A, Ohlan A, et al. Structural, magnetic and ferroelectric properties of Pr doped multiferroics bismuth ferrites [J]. Journal of Magnetism and Magnetic Materials,2015,394:385.
8 Dai H, Xue R, Chen Z, et al. Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics [J]. Cera-mics International,2014,40(10):15617.
9 Song G L, Song Y C, Su J, et al. Crystal structure refinement, ferroelectric and ferromagnetic properties of Ho3+ modified BiFeO3 multiferroic [J]. Journal of Alloys and Compounds,2016,389(1):73.
10 Wen X L, Chen Z, Liu E H, et al. Effect of Ba and Mn doping on microstructure and multiferroic properties of BiFeO3 ceramics [J]. Journal of Alloys and Compounds,2016,678:511.
11 Kumar V, Singh S. Improved structure stability, optical and magnetic properties of Ca and Ti co-substituted BiFeO3 nanoparticles [J]. Applied Surface Science,2016,386:78.
12 Ma Y, Tang X, Lu M, et al. Substitution-driven structural and magnetic transformation of Mn- and Co-doped BiFeO3 [J]. Journal of Superconductivity and Novel Magnetism,2015,28(12):3593.
13 Sui Y, Xin C, Zhang X, et al. Enhancement of multiferroic in BiFeO3 by Co doping [J]. Journal of Alloys and Compounds,2015,645:78.
14 Xie Yan, Zhu Yongdan, Hu Cheng, et al. Preparation and properties of Ba and Ti co-doped BiFeO3 multiferroic functional ceramics [J].Journal of Wuhan University,2016,62(4):331(in Chinese).
谢炎,朱永丹,胡诚,等.Ba,Ti双位共掺杂BiFeO3多铁功能陶瓷的制备与性能[J].武汉大学学报,2016,62(4):331.
15 Li Chenyang, Wu Chunfang, Wei Jie, et al. Preparation and multiferroic study of Zr doped BiFeO3 ceramics [J]. Journal of Lanzhou University,2011,47(3):107(in Chinese).
李晨阳,吴春芳,魏杰,等.Zr掺杂BiFeO3陶瓷的制备及其多铁性研究[J].兰州大学学报,2011,47(3):107.
16 Kundu A K, Ranjith R, Kundys B, et al. A multiferroic ceramic with perovskite structure: (La0.5Bi0.5)(Mn0.5Fe0.5)O3.09 [J]. Applied Physics Letters,2008,93(5):803.
17 Villafuerte-Castrejón M E, García-Guaderrama M, Fuentes L. New Fe3+/Cr3+ perovskites with anomalous transport properties: The solid solution LaxBi1-xFe0.5Cr0.5O3 (0.4 ≤ x ≤ 1) [J]. Inorganic Chemistry,2011,50(17):8340.
18 Ruan J H, Yao B M, Tang P, et al. The electrical and enhanced magnetic properties of (Ce, Co) doped BiFeO3 particles synthesized via sol-gel method[J]. Ferroelectrics,2015,489(1):73.
19 Chauhan S, Kumar M, Pal P. Substitution driven structural and magnetic properties and evidence of spin phonon coupling in Sr-doped BiFeO3 nanoparticles[J]. RSC Advances,2016,6(72):64.
20 Islam M R, Galib R H, Sharif A, et al. Correlation of charge defects and morphology with magnetic and electrical properties of Sr and Ta codoped BiFeO3 [J]. Journal of Alloys and Compounds,2016,688:1186.
21 Chen Z, Wu Y, Wang X, et al. Ferromagnetism and enhanced photocatalytic activity in Nd doped BiFeO3 nanopowders [J]. Journal of Materials Science: Materials in Electronics,2015,26(12):9929.
22 Yu X, An X. Enhanced magnetic and optical properties of pure and (Mn, Sr) doped BiFeO3 nanocrystals[J]. Solid State Communications,2009,149(17-18):711.
23 Priyadharsini P, Pradeep A, Sathyamoorthy B, et al. Enhanced multiferroic properties in La and Ce co-doped BiFeO3 nanoparticles [J]. Journal of Physics and Chemistry of Solids,2014,75(7):797.
24 Cazayous M, Malka D, Lebeugle D, et al. Electric field effect on BiFeO3 single crystal investigated by Raman spectroscopy [J]. Applied Physics Letters,2007,91(7):759.
25 Singh M K, Ryu S, Jang H M. Polarized Raman scattering of multiferroic BiFeO3 thin films with pseudo-tetragonal symmetry [J]. Physical Review B,2005,72(13):2101.
26 Hu Z, Chen D, Wang S, et al. Facile synthesis of Sm-doped BiFeO3, nanoparticles for enhanced visible light photocatalytic performance [J]. Materials Science and Engineering B,2017,220:1.
27 Hu W, Chen Y, Yuan H, et al. Structure, magnetic, and ferroelectric properties of Bi1-xGdxFeO3 nanoparticles [J]. Journal of Physical Chemistry C,2011,115(18):8869.
28 Zhang N, Yang Y W, Su J, et al. Role of oxygen vacancies in deciding the high temperature magnetic properties of Ba and Sm substituted BiFeO3 ceramics [J]. Journal of Alloys and Compounds,2016,677:252.
29 Song G, Jian S, Zhang N, et al. Effects of oxygen content on the electric and magnetic properties of BiFeO3 compound [J]. Physica B Condensed Matter,2016,493:47.
30 Mao W, Wang X, Han Y, et al. Effect of Ln (Ln = La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles [J]. Journal of Alloys and Compounds,2014,584(1):520.
[1] 卢爽, 刘琳, 谢锦印, 武亚琪, 邢锦娟. 2-氨基苯并咪唑缩对甲基苯甲醛席夫碱的合成及缓蚀性能[J]. 材料导报, 2021, 35(20): 20195-20199.
[2] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[3] 季万万, 张帅, 陆小龙, 方必军, 丁建宁. TC、高性能压电陶瓷BNT-PZT的制备及微观机制[J]. 材料导报, 2020, 34(20): 20010-20014.
[4] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[5] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[6] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[7] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[8] 龚跃球, 石晓宇, 李京兵, 谢淑红. 热力学计算指导下改进CVD法制备大面积薄层MoS2[J]. 材料导报, 2019, 33(22): 3708-3711.
[9] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[10] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[11] 郑奎,袁昌来,周星星,王维清,许积文,周昌荣. Ba0.04Bi0.48Na0.48TiO3-SrTiO3陶瓷微结构和储能性能[J]. 《材料导报》期刊社, 2018, 32(2): 171-175.
[12] 崔巍, 王珂, 姜民政, 马春阳, 冯子明, 冷建成. 管道焊缝裂纹扩展的流固磁耦合表征[J]. 材料导报, 2018, 32(16): 2852-2858.
[13] 李广洋, 杨杰, 邱锋, 王荣飞, 王茺, 杨宇. 稀磁掺杂MnxGe1-x量子点的制备及应用[J]. 《材料导报》期刊社, 2018, 32(13): 2176-2182.
[14] 李允怡,王伟,刘志军,龚威,解其云. 氮化铟薄膜的p型掺杂和铁磁性研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 54-58.
[15] 尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋. CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能[J]. 材料导报编辑部, 2017, 31(22): 26-29.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed