Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1577-1581    https://doi.org/10.11896/j.issn.1005-023X.2018.10.001
  研究快报 |
退火热处理对等径角挤压回收Ti-6Al-4V合金微观结构和显微硬度的影响
施 麒1,2, Yau Yau Tse2, Rebecca Higginson2, 陈 峰1, 陶麒鹦1
1 广东省材料与加工研究所,广州 510650;
2 拉夫堡大学材料学院,莱斯特郡,英国 LE11 3TU
Effect of Annealing Treatment on Microstructure and Micro-hardness of Equal Channel Angular Pressing Recycled Ti-6Al-4V
SHI Qi1,2, Yau Yau Tse2, Rebecca Higginson2, CHEN Feng1, TAO Qiying1
1 Guangdong Institute of Materials and Processing, Guangzhou 510650;
2 Department of Materials, Loughborough University, Leicestershire, UK, LE11 3TU
下载:  全 文 ( PDF ) ( 3897KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用等径角挤压法回收Ti-6Al-4V合金切屑,并研究了回收样品和退火处理样品的微观结构和显微硬度。结果表明:在回收样品中,切屑之间的边界依然存在,而由于剧烈塑性变形,超细晶结构和较强的纤维织构得以形成。退火处理后,切屑边界部分消失,超细晶组织部分再结晶;而与此同时,退火处理样品展现出更宽泛的织构,再结晶晶粒并不存在择优取向。值得注意的是,退火处理样品的显微硬度较回收样品略有升高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
施 麒
Yau Yau Tse
Rebecca Higginson
陈 峰
陶麒鹦
关键词:  Ti-6Al-4V  切屑  等径角挤压  超细晶结构  显微硬度    
Abstract: The present study concerns the change in microstructure and micro-hardness induced by annealing treatment for Ti-6Al-4V machining chips recycled by using equal channel angular pressing (ECAP). The microstructure exploration and micro-hardness tests upon the as-recycled Ti-6Al-4V as well as the sample experienced subsequent annealing treatment were carried out. We observed that the prior chip boundaries remained in the recycled material, and the severe plastic deformation contributed to the formation of the ultrafine grained microstructure and a strong fibre-like texture. After annealing, the chip boundaries partially dissolved and the fine grains partially recrystallized. Meantime, the annealed material exhibited a weaker texture and a wider orientation distribution was found for the recrystallized grains. It is noteworthy that the micro-hardness remained essentially unchanged, even slightly increased for the recycled Ti-6Al-4V after heat treatment.
Key words:  Ti-6Al-4V    machining chips    equal channel angular pressing    ultrafine grained microstructure    micro-hardness
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG376  
引用本文:    
施 麒, Yau Yau Tse, Rebecca Higginson, 陈 峰, 陶麒鹦. 退火热处理对等径角挤压回收Ti-6Al-4V合金微观结构和显微硬度的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1577-1581.
SHI Qi, Yau Yau Tse, Rebecca Higginson, CHEN Feng, TAO Qiying. Effect of Annealing Treatment on Microstructure and Micro-hardness of Equal Channel Angular Pressing Recycled Ti-6Al-4V. Materials Reports, 2018, 32(10): 1577-1581.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.001  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1577
1 Cui C, Hu B M, Zhao L, et al. Titanium alloy production technology, market prospects and industry development[J]. Materials & Design,2011,32(3):1684.
2 Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science & Engineering A,1996,213(1-2):103.
3 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Progress in Materials Science,2009,54(3):397.
4 Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials,2009,2(1):20.
5 Haase M, Khalifa N B, Tekkaya A E, et al. Improving mechanical properties of chip-based aluminum extrudates by integrated extrusion and equal channel angular pressing (iECAP)[J]. Materials Science & Engineering A,2012,539(2):194.
6 Hyodo A, Bolfarini C, Ishikawa T T. Chemistry and tensile properties of a recycled AA7050 via spray forming and ECAP/E[J]. Materials Research,2012,15(5):739.
7 Aida T, Takatsuji N, Matsuki K, et al. Homogeneous consolidation process by ECAP for AZ31 cutting chips[J]. Journal of Japan Institute of Light Metals,2004,54(11):532.
8 Hu M L, Ji Z S, Chen X Y, et al. Solid-state recycling of AZ91D magnesium alloy chips[J]. Transactions of Nonferrous Metals Society of China,2012,22(10):s68.
9 Luo P, Mcdonald D T, Palanisamy S, et al. Ultrafine-grained pure Ti recycled by equal channel angular pressing with high strength and good ductility[J]. Journal of Materials Processing Technology,2013,213(3):469.
10 Luo P, Mcdonald D T, Xu W, et al. A modified Hall-Petch relationship in ultrafine-grained titanium recycled from chips by equal channel angular pressing[J]. Scripta Materialia,2012,66(10):785.
11 Luo P, Mcdonald D T, Zhu S M, et al. Analysis of microstructure and strengthening in pure titanium recycled from machining chips by equal channel angular pressing using electron backscatter diffraction[J]. Materials Science & Engineering A,2012,538(3):252.
12 Shi Q, Tse Y Y, Higginson R L. Effects of processing parameters on relative density, microhardness and microstructure of recycled Ti-6Al-4V from machining chips produced by equal channel angular pressing[J]. Materials Science & Engineering A,2016,651:248.
13 Lui E W, Palanisamy S, Dargusch M S, et al. Effects of chip conditions on the solid state recycling of Ti-6Al-4V machining chips[J]. Journal of Materials Processing Technology,2016,238:297.
14 Mcdonald D T, Lui E W, Palanisamy S, et al. Achieving superior strength and ductility in Ti-6Al-4V recycled from machining chips by equal channel angular pressing[J]. Metallurgical & Materials Tran-sactions A,2014,45(9):4089.
15 Mcdonald D T, Luo P, Palanisamy S, et al. Ti-6Al-4V recycled from machining chips by equal channel angular pressing[J]. Key Engineering Materials,2012,520:295.
16 Wu S D. Nature of shear flow lines in equal-channel angular-pressed metals and alloys[J]. Philosophical Magazine Letters,2007,87(10):735.
17 Han W Z, Zhang Z F, Wu S D, et al. Anisotropic compressive pro-perties of iron subjected to single-pass equal-channel angular pressing[J]. Philosophical Magazine Letters,2006,86(7):435.
18 Fang D R, Zhang Z F, Wu S D, et al. Effect of equal channel angular pressing on tensile properties and fracture modes of casting Al-Cu alloys[J]. Materials Science and Engineering A,2006,426(1-2):305.
19 Beausir B, Tóth L S, Neale K W. Ideal orientations and persistence characteristics of hexagonal close packed crystals in simple shear[J]. Acta Materialia,2007,55(8):2695.
20 Yapici G G, Karaman I. Common trends in texture evolution of ultra-fine-grained hcp materials during equal channel angular extrusion[J]. Materials Science & Engineering A,2009,503(1-2):78.
21 Yapici G G, Karaman I, Luo Z P. Mechanical twinning and texture evolution in severely deformed Ti-6Al-4V at high temperatures[J]. Acta Materialia,2006,54(14):3755.
22 Agnew S R, Mehrotra P, Lillo T M, et al. Crystallographic textureevolution of three wrought magnesium alloys during equal channel angular extrusion[J]. Materials Science & Engineering A,2005,408(1-2):72.
23 Shin D H, Kim I, Kim J, et al. Microstructure development during equal-channel angular pressing of titanium[J]. Acta Materialia,2003,51(4):983.
24 Suwas S, Gottstein G, Kumar R. Evolution of crystallographic texture during equal channel angular extrusion (ECAE) and its effects on secondary processing of magnesium[J]. Materials Science & Engineering A,2007,471(1-2):1.
25 Stráská J, Janeek M, íek J, et al. Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX-ECAP)[J]. Materials Characte-rization,2014,94(8):69.
26 Higgins G T. Grain-boundary migration and grain growth[J]. Metal Science,1973,8(1):143.
27 Zhou L Z, Guo J T. Grain growth and kinetics for nanocrystalline nial[J]. Scripta Materialia,1998,40(2):139.
28 Cao P, Lu L, Lai M O. Grain growth and kinetics for nanocrystalline magnesium alloy produced by mechanical alloying[J]. Materials Research Bulletin,2001,36(5-6):981.
29 Thein M A, Lu L, Lai M O. Kinetics of grain growth in nanocrystalline magnesium-based metal-metal composite synthesized by mechanical alloying[J]. Composites Science & Technology,2006,66(3):531.
30 Chao Q, Hodgson P D, Beladi H. Thermal stability of an ultrafine grained Ti-6Al-4V alloy during post-deformation annealing[J]. Materials Science and Engineering A,2017,694:13.
31 Rack H J, Qazi J, Allard L, et al. Thermal stability of severe plastically deformed VT-6 (Ti-6Al-4V)[J]. Materials Science Forum,2008,584-586:893.
[1] 胡鸿彪, 徐帅, 章海明, 金朝阳. 等轴晶AZ80镁合金的全场晶体塑性模拟研究[J]. 材料导报, 2024, 38(9): 22110077-6.
[2] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[3] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[4] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[5] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[6] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[7] 王利卿, 凌子涵, 赵占勇, 张震, 白培康. 增材制造Ti-6Al-4V合金晶粒形貌调控研究进展[J]. 材料导报, 2023, 37(22): 22030266-7.
[8] 张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
[9] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[10] 徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
[11] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[12] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[13] 孙玉玲, 马宏昊, 沈兆武, 杨明, 田启超. 槽型结构316L/CuCrZr真空熔铸复合技术的研究[J]. 材料导报, 2022, 36(23): 21050179-5.
[14] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[15] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed