Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 26-29    https://doi.org/10.11896/j.issn.1005-023X.2017.022.006
  材料研究 |
CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能
尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋
合肥学院化学与材料工程系,合肥230601
Structure and Electrical Properties of Piezoelectric Ceramics Ba0.9Ca0.1Ti1-xSnxO3 Sintered with CeO2 Doping
YIN Qiyi, TIAN Chang an, HU Shuting, WANG Chengze, WANG Tingting,YANG Jie, JI Dongdong, LIU Yang
Department of Chemistry and Materials Engineering, Hefei University, Hefei 230601
下载:  全 文 ( PDF ) ( 254KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用传统的陶瓷烧结技术,通过添加0.15%(摩尔分数)CeO2,在1 120 ℃烧结2 h,成功制备了新型无铅压电陶瓷Ba0.9Ca0.1Ti1-xSnxO3,并且检测了陶瓷样品的微结构和电性能。XRD显示所有陶瓷样品均具有纯的钙钛矿结构,在室温下为典型的四方相,SEM显示适量添加锡离子可以提高陶瓷致密性。在室温下,锡离子改性的BaTiO3基压电陶瓷在x=0.02处显示了优异的压电、介电和铁电性能(d33=276 pC/N, kp=46%, εr=3 678, tanδ=2.4%, Pr=18.2 μC/cm2, EC=1.12 kV/mm)。这些优异的检测结果证实适当添加锡离子能改善BaTiO3基压电陶瓷的电性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹奇异
田长安
胡舒婷
王成泽
王婷婷
阳杰
吉冬冬
刘洋
关键词:  无铅压电陶瓷  压电性  铁电性  介电性能  CeO2掺杂    
Abstract: New lead-free piezoelectric ceramics Ba0.9Ca0.1Ti1-xSnxO3 with 0.15%(mole fraction) CeO2doping were prepared via the conventional sintering technique at 1 120 ℃ for 2 h, and the products’ microstructure and electrical properties were investigated. X-ray diffraction indicates that all the ceramics possess a pure perovskite structure with typical tetragonal symmetry, SEM micrographs suggest that the appropriate addition amount of Sn can enhance the compactness. The Sn-modified BaTiO3-based ceramics exhibit an optimum piezoelectric, dielectric and ferroelectric properties (d33=276 pC/N, kp=46%, εr=3 678, tanδ=2.4%, Pr=18.2 μC/cm2, EC=1.12 kV/mm) at room temperature while x=0.02. These excellent results demonstrate that appropriate amount of Sn can further improve the electrical properties of BaTiO3-based piezoelectric ceramics.
Key words:  lead-free piezoelectric ceramic    piezoelectricity    ferroelectricity    dielectric properties    CeO2 dopingCeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3
发布日期:  2018-05-08
ZTFLH:  TM282  
基金资助: *安徽省高等学校自然科学研究项目(KJ2017A533);合肥学院优秀青年人才支持项目(16YQ04RC);安徽省高等学校质量工程项目(2016ckjh161)
作者简介:  尹奇异:男,1978年生,博士,副教授,主要研究方向为功能陶瓷E-mail:yinqyi@163.com
引用本文:    
尹奇异,田长安,胡舒婷,王成泽,王婷婷,阳杰,吉冬冬,刘洋. CeO2掺杂制备Ba0.9Ca0.1Ti1-xSnxO3压电陶瓷的结构及电性能[J]. 材料导报编辑部, 2017, 31(22): 26-29.
YIN Qiyi, TIAN Chang an, HU Shuting, WANG Chengze, WANG Tingting,YANG Jie, JI Dongdong, LIU Yang. Structure and Electrical Properties of Piezoelectric Ceramics Ba0.9Ca0.1Ti1-xSnxO3 Sintered with CeO2 Doping. Materials Reports, 2017, 31(22): 26-29.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.006  或          https://www.mater-rep.com/CN/Y2017/V31/I22/26
1 Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics[J]. Nature, 2004,432:84.
2 Lin W, Fan L L, Lin D M, et al. Phase transition, ferroelectric and piezoelectric properties of Ba1-xCaxTi1-yZryO3 lead-free ceramics[J]. Curr Appl Phys, 2013,13:159.
3 Shi J, Yang W. Piezoelectric and dielectric properties of CeO2-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics[J]. J Alloys Compd, 2009,472:267.
4 Yin Q, Sun Z, Shi S, et al. Structure and electrical properties of K0.5Na0.5NbO3-SrTiO3 lead-free piezoelectric ceramics with LiSbO3 doping[J]. J Mater Sci: Mater El, 2013,24:4258.
5 Liu W F, Ren X B. Large piezoelectric effect in Pb-free ceramics[J]. Phys Rev Lett, 2009,103:257602.
6 Ye S, Fuh J, Lu L. Effects of Ca substitution on structure, piezoelectric properties, and relaxor behavior of lead-free Ba(Ti0.9Zr0.1)O3 piezoelectric ceramics[J]. J Alloys Compd, 2012,541:396.
7 Chu B J, Chen D R, Li G R, et al. Electrical properties of Na1/2Bi1/2-TiO3-BaTiO3 ceramics[J]. J Eur Ceram Soc,2002,22:2115.
8 Li H, Feng C, Ya W. Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-BaTiO3 morphotropic-phase-boundary composition[J]. Mater Lett, 2004,58:1194.
9 Malyshkina O V, Movchikova A A, Penzov K N, et al. Investigation of thermal and dielectric properties of tin-doped piezoelectric ceramics based on barium titanate[J]. Phys Solid State, 2010,52:121.
10 Hippel A, Breckenridge R G, Chesley F G, et al. High dielectric constant ceramics[J]. Ind Eng Chem, 1946,38:1097.
11 Wul B M, Goldman l M. Dilelectrie constants of titanates of metal of the second group[J]. Compt Rend Acad Sci URSS, 1945,49:139.
12 Mason W P. Eleetrostrictive effect in baritlm titanate ceramics[J]. Phys Rev, 1948,74:1134.
13 Jaffe B, Cook W R, Jaffe H. Piezoelectric ceramics[M]. London: Academic, 1971.
14 Li W, Xu Z J, Chu R Q, et al. High piezoelectric d33 coefficient in (Ba1-xCax)(Ti0.98Zr0.02)O3 lead-free ceramics with relative high Curie temperature[J]. Mater Lett, 2010,64:2325.
15 Zhang S, Zhang H, Zhang B, et al. Phase-transition behavior and piezoelectric properties of lead-free (Ba0.95Ca0.05)(Ti1-xZrx)O3 ceramics[J]. J Alloys Compd, 2010,506:131.
16 Cui Y, Liu X, Jiang M, et al. Lead-free (Ba0.85Ca0.15)(Ti0.9Zr0.1)-O3-CeO2 ceramics with high piezoelectric coefficient obtained by low-temperature sintering[J]. Ceram Int, 2012,38:4761.
17 Maiti T, Guo R, Bhalla A S. Electric field dependent dielectric properties and high tunability of BaZrxTi1-xO3 relaxor ferroelectrics[J]. Appl Phys Lett, 2006,89:122909.
18 Halder S, Gerber P, Schneller T, et al. Electromechanical properties of Ba(Ti1-xZrx)O3 thin films[J]. Appl Phys A, 2005,81:11.
19 Li W, Xu Z, Chu R, et al. Piezoelectric and dielectric properties of (Ba1-xCax)-(Ti0.95Zr0.05)O3 lead-free ceramics[J]. J Am Ceram Soc, 2010,93:2942.
20 Zhang P Z, Shen M R, Fang L, et al. Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions[J]. Appl Phys Lett, 2008,92:222908.
21 Wu B, Xiao D, Wu W, et al. Microstructure and electrical properties of (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3 modified Bi0.51Na0.50TiO3 lead-free ceramics[J]. Ceram Int, 2012,38:5677.
22 Li W, Xu Z, Chu R, et al. Large piezoelectric coefficient in(Ba1-xCax)(Ti0.96Sn0.04)O3 lead-free ceramics[J]. J Am Ceram Soc, 2011,94:4131.
23 Xue D Z, Zhou Y M, Bao H X, et al. Large piezoelectric effect in Pb-free Ba(Ti,Sn)O3-x(Ba,Ca)TiO3 ceramics[J]. Appl Phys Lett, 2011,99:122901.24 WangXL,LiBO.Dielectricaudio-frequencydispersioninBa(Ti1-xSnx)O3ferroelectrics[J].SolidStateCommun,2009,149:537.
25 Wang P, Li Y, Lu Y. Enhanced piezoelectric properties of (Ba0.85-Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcinations and sintering temperature[J]. J Eur Ceram Soc, 2011,31:2005.
26 Wang X S, Yamada H, Xu C N. Large electrostriction near the solubility limit in BaTiO3-CaTiO3 ceramics[J]. Appl Phys Lett, 2005,86:122905.
[1] 张昌松, 王向阳, 魏立柱, 王如鹏. 折叠结构的PVDF/BTO复合薄膜压电纳米发电机的制备及性能研究[J]. 材料导报, 2024, 38(6): 22080132-6.
[2] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[3] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[4] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[5] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[6] 王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
[7] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[8] 宋恩鹏, 靳权, 刘钊, 陈奋华, 蔡克. 自组装烧结法可控合成钛酸钡微纳米陶瓷的效果和适用范围研究[J]. 材料导报, 2023, 37(17): 22010205-6.
[9] 汪跃群, 项光磊, 高亮, 王一平. 一步法合成的2.0%Sm-0.25Pb(Mg1/3Nb2/3)O3-0.75Pb(Zr1-xTix)O3压电陶瓷的压电性能[J]. 材料导报, 2023, 37(12): 22040356-6.
[10] 苏宇, 翁凌, 王小明, 关丽珠, 张笑瑞. 核壳结构SiCNWs@SiO2/PVDF复合材料的制备与介电储能特性[J]. 材料导报, 2023, 37(11): 22010127-11.
[11] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[12] 刘锦, 梁炳亮, 张建军, 艾云龙. 微波烧结微波介质陶瓷的研究进展[J]. 材料导报, 2022, 36(3): 20040130-10.
[13] 关嘉怡, 张刚华, 曾涛, 白建峰, 顾卫华. 利用高压手段调控铁电材料结构与性能的研究进展[J]. 材料导报, 2022, 36(12): 20110057-8.
[14] 唐滋励, 夏浚淞, 尹航, 傅光辉, 艾细彤, 唐海龙. 熔盐辅助制备钛酸锶钡纳米粉体及其介电性能[J]. 材料导报, 2022, 36(11): 21010142-5.
[15] 段瑞侠, 陈金周, 刘文涛, 何素琴, 刘浩, 黄淼铭, 朱诚身. 聚乳酸基压电材料的研究和应用[J]. 材料导报, 2022, 36(10): 20080234-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed