Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 22050055-6    https://doi.org/10.11896/cldb.22050055
  无机非金属及其复合材料 |
自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能
梁红玉*, 王斌, 陆光, 商丽艳*
辽宁石油化工大学环境与安全工程学院,辽宁 抚顺 113001
Efficient Wide-spectrum-driven N2 Photofixation over g-C3N4/Cu2(OH)2CO3 Heterojunction Doped of Nitrogen Vacancies via Self-sacrificial Method
LIANG Hongyu*, WANG Bin, LU Guang, SHANG Liyan*
School of Environmental and Safety Engineering,Liaoning Petrochemical University,Fushun 113001,Liaoning,China
下载:  全 文 ( PDF ) ( 10717KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究采用原位自牺牲法合成了N空位掺杂的g-C3N4/Cu2(OH)2CO3(VCN/Cu)异质结催化剂,该催化剂体现出优异的可见-近红外宽光谱驱动性。实验结果表明,g-C3N4与Cu2(OH)2CO3之间的电荷迁移遵循“Z”型机制。氮空位的存在抑制了电荷载流子的重组,降低了界面电荷转移的能量屏障,对N2和O2的吸附和活化激发了固氮还原反应的进行,并提供了更多的反应活性位点。体系中甲醇作为空穴清除剂时O2的添加对制备的催化剂的光固氮性能有显著的促进作用,在50% O2和50% N2混合气氛下VCN/Cu异质结催化剂的铵离子产率高达14.52 mg·L-1·h-1·g-1,是纯N2气氛下的2.7倍,且按照“三线”光固氮机理运行。本研究为低耗、绿色环保固氮工艺提供了一条新途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁红玉
王斌
陆光
商丽艳
关键词:  石墨相氮化碳  碱式碳酸铜  光催化固氮  氮空位  自牺牲法    
Abstract: In this study,N vacancies-doped g-C3N4/Cu2(OH)2CO3 (VCN/Cu) heterojunction catalyst with superior wide-spectrum-driven (from VIS to NIR) N2 photofixation ability was synthesized via in-situ self-sacrificial method.The experimental results show that the charge transfer between g-C3N4 and Cu2(OH)2CO3 follows the ‘Z-scheme’ mechanism.N vacancies-induced defect states might act as the initial charge carriers acceptor to reduce electron/hole recombination,and also promote the interfacial charge transfer from N vacancies of excited g-C3N4 to N2 and O2molecules absorbed and pre-activated by N vacancies,leading more active sites.The nitrogen photofixation performance of as-prepared catalyst is deeply influenced by the O2content in reaction system with methanol as hole scavenger.The as-prepared VCN/Cu heterojunction catalyst demonstrates the ammonium ion production rate as high as 14.52 mg·L-1·h-1·g-1under the atmosphere of 50% O2 and 50% N2,which is 2.7 times higher than that under pure nitrogen atmosphere,and a ‘three-channel’ ammonia production mechanism is proposed.This study might open up a new vista to nitrogen fixation through the less energy-demanding green photocatalytic process.
Key words:  g-C3N4    Cu2(OH)2CO3    N2 photofixation    nitrogen vacancies    self-sacrificial method
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  O641  
  O649  
基金资助: 辽宁省科技厅自然科学基金(2019-ZD-0063)
通讯作者:  *梁红玉,辽宁石油化工大学环境与安全工程学院副教授、硕士研究生导师。1991年深圳大学应用化学专业毕业后到辽宁石油化工大学工作至今。2005年辽宁石油化工大学环境工程专业硕士毕业,2018年东北大学冶金物理化学专业博士毕业。目前主要从事纳米复合材料、环境污染控制等方面的研究工作。以第一作者身份在RSC Adv.、New J. Chem.、Russ. J. Electrochem.、《材料导报》《分子催化》等国内外著名期刊上发表论文10余篇,申请国内专利10余项,获得授权专利5项,知识产权转让1项。lianghongyu163@163.com
商丽艳,辽宁石油化工大学环境与安全工程学院副教授、硕士研究生导师。2007年 7月毕业于辽宁石油化工大学环境工程专业,获工学硕士学位。2018年7月毕业于东北大学冶金物理化学专业,获博士学位,主要从事硫铁化合物的自燃性及自燃机理研究。先后发表学术论文50余篇,如Energy Conversion and Management(ECM)、Journal of Natural Gas Science and Engineering、Physica E等期刊,获省部级、市级科技进步奖3项,主持和参加国家、省部级科研项目10余项,参编教材3部。lyshang2011@126.com   
引用本文:    
梁红玉, 王斌, 陆光, 商丽艳. 自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能[J]. 材料导报, 2024, 38(16): 22050055-6.
LIANG Hongyu, WANG Bin, LU Guang, SHANG Liyan. Efficient Wide-spectrum-driven N2 Photofixation over g-C3N4/Cu2(OH)2CO3 Heterojunction Doped of Nitrogen Vacancies via Self-sacrificial Method. Materials Reports, 2024, 38(16): 22050055-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050055  或          http://www.mater-rep.com/CN/Y2024/V38/I16/22050055
1 Rafiqul I, Weber C, Lehmann B, et al. Energy, 2005, 30(13), 2487.
2 Schrauzer G N, Guth T D. Journal of the American Chemical Society, 1977, 99(6), 7189.
3 Horrocks S M. Technology & Culture, 2002, 43(3), 622.
4 Zhu D, Zhang L, Ruther R E, et al. Nature Materials. 2013, 12(9), 836.
5 Shilov A E. Russian Chemical Bulletin, 2003, 52(12), 2555.
6 Bazhenova T A, Shilov A E. Coordination Chemistry Reviews. 1995, 144(1), 69.
7 Shilov A E. Metal complexes in biomimetic chemical reactions, CRC Press, US, 1997, pp.73.
8 Shilov A E. Electron transfer in chemistry, Wiley VCH Press, GER, 2001, pp.878.
9 Liang Y T, Vijayan B K, Gray K A, et al. Nano Letters, 2011, 11(7), 2865.
10 Walter M G, Warren E L, McKone J R, et al. Chemical Reviews, 2010, 110(3), 6446.
11 Britto P J, Santhanam K S V, Rubio A, et al. Advanced Materials, 1999, 11(2), 154.
12 Mao Y, Wu M, Li G, et al. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125(2), 1179
13 Dong G H, Ho W K, Wang C. Journal of Materials Chemistry A, 2015, 3(2), 23435.
14 Xiang H B, Gou J J, Wu L, et al. Materials Reports, 2022, 36(6), 21030152 (in Chinese).
向寒宾, 苟浇浇, 吴琳, 等. 材料导报, 2022, 36(6), 21030152.
15 Liang Z, Xue Y, Wang X. Materials Today Nano, 2022, 18, 100204.
16 Prabhakar V S V, Kumar R P A, Jaesool S, et al. ACS Omega, 2018, 3(7), 7587.
17 He Z K, Fu J W, Cheng B, et al. Applied Catalysis B: Environmental, 2017, 205(5), 104.
18 Chen D, Wang X N, Zhang X Q, et al. International Journal of Hydrogen Energy, 2020, 45(46), 24697.
19 Li S J, Chen X, Hu S Z, et al. RSC Advances, 2016, 6(2), 45931.
20 Liang H Y, Zou H, Hu S Z. New Journal of Chemistry, 2017, 41(17), 8920.
21 Zhu J, Ling M, Ma R D, et al. Materials Reports, 2024, 38(11), 23010115 (in Chinese).
朱杰, 凌敏, 马润东, 等. 材料导报, 2024, 38(11), 23010115.
22 Hao X, Dai D S, Li S S. Dalton Transactions, 2018, 47(2), 348.
23 Wang X C, Maeda K A, Thomas K, et al. Nature Materials, 2009, 8(1), 76.
24 Ge L, Han C. Applied Catalysis B:Environmental, 2012, 117 (1), 268.
25 Zhang Y, Liu J, Wu G, et al. Nanoscale, 2012, 4(17), 5300.
26 Niu P, Zhang L, Liu G, et al. Advanced Functional Materials, 2012, 22(22), 4763.
27 Mohapatra P K, Singh N R. Photosynthesis Research, 2015, 123(1), 105.
28 Liu X, Han X, Liang Z, et al. Journal of Colloid and Interface Science, 2022, 605(1), 320.
29 Xy A, Wza B, Jha B, et al. Applied Catalysis A:General, 2020, 601(7), 601.
30 Xiao C, Zhang L, Wang K, et al. Nitrogen fixation, 2018(12), 239.
[1] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[2] 朱杰, 凌敏, 马润东, 王瑞芬, 安胜利. 高活性BiOI/g-C3N4光催化剂的合成及性能提高机制[J]. 材料导报, 2024, 38(11): 23010115-7.
[3] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[4] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[5] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[6] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[7] 黄韬博, 谢成瀚, 李璠, 王奕沣, 刘文. 花状二维氮化碳在模拟太阳光下光催化降解水中磺胺氯哒嗪机理研究[J]. 材料导报, 2022, 36(20): 21120162-6.
[8] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[9] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[10] 俞坤, 刘金香, 谢水波, 刘迎九, 葛玉杰. 聚吡咯/石墨相氮化碳复合材料吸附铀(Ⅵ)的性能与机制[J]. 材料导报, 2020, 34(23): 23020-23026.
[11] 梁红玉, 邹赫, 胡绍争, 李建中, 田彦文. 二元碱金属共掺杂石墨相氮化碳的制备及光催化性能评价[J]. 材料导报, 2018, 32(24): 4217-4223.
[12] 王辉, 李士君, 王梅, 裴彦博, 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报, 2018, 32(20): 3496-3503.
[13] 阎鑫, 惠小艳, 闫从祥, 艾涛, 苏兴华, 王振军, 孙国栋, 赵鹏. 类石墨相氮化碳二维纳米片的制备及可见光催化性能研究*[J]. CLDB, 2017, 31(9): 77-80.
[14] 娄冬冬, 张丽莎, 王海风, 陈志钢. 具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*[J]. 《材料导报》期刊社, 2017, 31(20): 1-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed