Abstract: In this study,N vacancies-doped g-C3N4/Cu2(OH)2CO3 (VCN/Cu) heterojunction catalyst with superior wide-spectrum-driven (from VIS to NIR) N2 photofixation ability was synthesized via in-situ self-sacrificial method.The experimental results show that the charge transfer between g-C3N4 and Cu2(OH)2CO3 follows the ‘Z-scheme’ mechanism.N vacancies-induced defect states might act as the initial charge carriers acceptor to reduce electron/hole recombination,and also promote the interfacial charge transfer from N vacancies of excited g-C3N4 to N2 and O2molecules absorbed and pre-activated by N vacancies,leading more active sites.The nitrogen photofixation performance of as-prepared catalyst is deeply influenced by the O2content in reaction system with methanol as hole scavenger.The as-prepared VCN/Cu heterojunction catalyst demonstrates the ammonium ion production rate as high as 14.52 mg·L-1·h-1·g-1under the atmosphere of 50% O2 and 50% N2,which is 2.7 times higher than that under pure nitrogen atmosphere,and a ‘three-channel’ ammonia production mechanism is proposed.This study might open up a new vista to nitrogen fixation through the less energy-demanding green photocatalytic process.
通讯作者:
*梁红玉,辽宁石油化工大学环境与安全工程学院副教授、硕士研究生导师。1991年深圳大学应用化学专业毕业后到辽宁石油化工大学工作至今。2005年辽宁石油化工大学环境工程专业硕士毕业,2018年东北大学冶金物理化学专业博士毕业。目前主要从事纳米复合材料、环境污染控制等方面的研究工作。以第一作者身份在RSC Adv.、New J. Chem.、Russ. J. Electrochem.、《材料导报》《分子催化》等国内外著名期刊上发表论文10余篇,申请国内专利10余项,获得授权专利5项,知识产权转让1项。lianghongyu163@163.com 商丽艳,辽宁石油化工大学环境与安全工程学院副教授、硕士研究生导师。2007年 7月毕业于辽宁石油化工大学环境工程专业,获工学硕士学位。2018年7月毕业于东北大学冶金物理化学专业,获博士学位,主要从事硫铁化合物的自燃性及自燃机理研究。先后发表学术论文50余篇,如Energy Conversion and Management(ECM)、Journal of Natural Gas Science and Engineering、Physica E等期刊,获省部级、市级科技进步奖3项,主持和参加国家、省部级科研项目10余项,参编教材3部。lyshang2011@126.com
引用本文:
梁红玉, 王斌, 陆光, 商丽艳. 自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能[J]. 材料导报, 2024, 38(16): 22050055-6.
LIANG Hongyu, WANG Bin, LU Guang, SHANG Liyan. Efficient Wide-spectrum-driven N2 Photofixation over g-C3N4/Cu2(OH)2CO3 Heterojunction Doped of Nitrogen Vacancies via Self-sacrificial Method. Materials Reports, 2024, 38(16): 22050055-6.
1 Rafiqul I, Weber C, Lehmann B, et al. Energy, 2005, 30(13), 2487. 2 Schrauzer G N, Guth T D. Journal of the American Chemical Society, 1977, 99(6), 7189. 3 Horrocks S M. Technology & Culture, 2002, 43(3), 622. 4 Zhu D, Zhang L, Ruther R E, et al. Nature Materials. 2013, 12(9), 836. 5 Shilov A E. Russian Chemical Bulletin, 2003, 52(12), 2555. 6 Bazhenova T A, Shilov A E. Coordination Chemistry Reviews. 1995, 144(1), 69. 7 Shilov A E. Metal complexes in biomimetic chemical reactions, CRC Press, US, 1997, pp.73. 8 Shilov A E. Electron transfer in chemistry, Wiley VCH Press, GER, 2001, pp.878. 9 Liang Y T, Vijayan B K, Gray K A, et al. Nano Letters, 2011, 11(7), 2865. 10 Walter M G, Warren E L, McKone J R, et al. Chemical Reviews, 2010, 110(3), 6446. 11 Britto P J, Santhanam K S V, Rubio A, et al. Advanced Materials, 1999, 11(2), 154. 12 Mao Y, Wu M, Li G, et al. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125(2), 1179 13 Dong G H, Ho W K, Wang C. Journal of Materials Chemistry A, 2015, 3(2), 23435. 14 Xiang H B, Gou J J, Wu L, et al. Materials Reports, 2022, 36(6), 21030152 (in Chinese). 向寒宾, 苟浇浇, 吴琳, 等. 材料导报, 2022, 36(6), 21030152. 15 Liang Z, Xue Y, Wang X. Materials Today Nano, 2022, 18, 100204. 16 Prabhakar V S V, Kumar R P A, Jaesool S, et al. ACS Omega, 2018, 3(7), 7587. 17 He Z K, Fu J W, Cheng B, et al. Applied Catalysis B: Environmental, 2017, 205(5), 104. 18 Chen D, Wang X N, Zhang X Q, et al. International Journal of Hydrogen Energy, 2020, 45(46), 24697. 19 Li S J, Chen X, Hu S Z, et al. RSC Advances, 2016, 6(2), 45931. 20 Liang H Y, Zou H, Hu S Z. NewJournal of Chemistry, 2017, 41(17), 8920. 21 Zhu J, Ling M, Ma R D, et al. Materials Reports, 2024, 38(11), 23010115 (in Chinese). 朱杰, 凌敏, 马润东, 等. 材料导报, 2024, 38(11), 23010115. 22 Hao X, Dai D S, Li S S. Dalton Transactions, 2018, 47(2), 348. 23 Wang X C, Maeda K A, Thomas K, et al. Nature Materials, 2009, 8(1), 76. 24 Ge L, Han C. Applied Catalysis B:Environmental, 2012, 117 (1), 268. 25 Zhang Y, Liu J, Wu G, et al. Nanoscale, 2012, 4(17), 5300. 26 Niu P, Zhang L, Liu G, et al. Advanced Functional Materials, 2012, 22(22), 4763. 27 Mohapatra P K, Singh N R. Photosynthesis Research, 2015, 123(1), 105. 28 Liu X, Han X, Liang Z, et al. Journal of Colloid and Interface Science, 2022, 605(1), 320. 29 Xy A, Wza B, Jha B, et al. Applied Catalysis A:General, 2020, 601(7), 601. 30 Xiao C, Zhang L, Wang K, et al. Nitrogen fixation, 2018(12), 239.