Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 6-11    https://doi.org/10.11896/j.issn.1005-023X.2017.016.002
  材料研究 |
基于纸纤维/晶须状碳纳米管/活性炭三元无金属集流体复合纸电极的柔性超级电容器*
蔡满园, 孙晓刚, 聂艳艳, 刘珍红, 邱治文, 陈珑
南昌大学机电工程学院,南昌330031
Flexible Supercapacitor Based on a Paper Fibers/Whisker-like Carbon Nanotubes/ Activated Carbon Ternary Composite Paper Electrode with Metal-free Current Collector
CAI Manyuan, SUN Xiaogang, NIE Yanyan, LIU Zhenhong, QIU Zhiwen, CHEN Long
School of Mechantronics Engineering, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 1857KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以纸纤维(PF)为基体,晶须状碳纳米管(WCNT)和活性炭(AC)为功能添加物,采用真空抽滤法制成PF/WCNT/AC三元无金属集流体复合电极。利用扫描电子显微镜(SEM)、X射线衍射(XRD)光谱仪、拉曼(Raman)光谱仪对其进行表征和分析,采用两电极测试体系对组装的超级电容器性能进行测试。结果表明,与涂布法所得的铝箔集流体(Al/WCNT/AC)电极相比,由PF/WCNT/AC三元复合电极组装的超级电容器比电容大幅提高,并展现出良好的充放电性能。在1 mV/s的扫描速率下比电容达325 F/g,几乎是Al/WCNT/AC超级电容器(108.7 F/g)的3倍。PF/WCNT/AC超级电容器在0.4 A/g电流密度下的比电容为95 F/g,在3.2 A/g电流密度下的比能量与比功率分别为36.76 Wh/kg、5.52 kW/kg。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡满园
孙晓刚
聂艳艳
刘珍红
邱治文
陈珑
关键词:  活性炭  晶须状碳纳米管  纸纤维  柔性  超级电容器  无金属集流体  纸电极    
Abstract: Using paper fibers (PFs) as matrix, whisker-like carbon nanotubes (WCNTs) and activated carbon (AC) as functional additives, a PF/WCNT/AC composite paper electrode was fabricated by traditional paper-making process. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy were used for characterization, and a double-electrode system was employed to measure the performance of supercapacitor based on the PF/WCNT/AC composite paper electrode. The results showed that the supercapacitor with PF/WCNT/AC electrode exhibits a good charge and discharge performance, and a significantly increased specific capacitance compared to the supercapacitor with Al/WCNT/AC composite that has a metal current collector, as the former (325 F/g) was 199% higher than the latter (108.7 F/g) under a scan rate of 1 mV/s. PF/WCNT/AC supercapacitor had a specific capacitance of 95 F/g while the current density was 0.4 A/g, and its specific energy and specific power were respectively 36.76 Wh/kg, 5.52 kW/kg while the current density was 3.2 A/g.
Key words:  activated carbon    whisker-like carbon nanotubes    paper fiber    flexibility    supercapacitor    metal-free current collector    paper electrode
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TB34  
  O646  
基金资助: 江西省科技厅科研项目(20142BBE50071);江西省教育厅(KJD13006)
通讯作者:  孙晓刚: 通讯作者,男,1957年生,教授,研究方向为碳纳米管的制备 E-mail: xiaogangsun@163.com   
作者简介:  蔡满园:男,1991年生,硕士,研究方向为碳纳米管导电纸超级电容器 E-mail: NCUcaimanyuan@163.com
引用本文:    
蔡满园, 孙晓刚, 聂艳艳, 刘珍红, 邱治文, 陈珑. 基于纸纤维/晶须状碳纳米管/活性炭三元无金属集流体复合纸电极的柔性超级电容器*[J]. 《材料导报》期刊社, 2017, 31(16): 6-11.
CAI Manyuan, SUN Xiaogang, NIE Yanyan, LIU Zhenhong, QIU Zhiwen, CHEN Long. Flexible Supercapacitor Based on a Paper Fibers/Whisker-like Carbon Nanotubes/ Activated Carbon Ternary Composite Paper Electrode with Metal-free Current Collector. Materials Reports, 2017, 31(16): 6-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.002  或          https://www.mater-rep.com/CN/Y2017/V31/I16/6
1 Thounthong P, Raёl S, Davat B. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications[J]. J Power Sources,2009,193(1):376.
2 Moreno J, Ortuzar M E, Dixon J W. Energy-management system for a hybrid electric vehicle,using ultracapacitors and neural networks[J]. IEEE Trans Ind Electron,2006,53(2):614.
3 Thounthong, Phatiphat, Chunkag, et al. Energy management of fuel cell/solar cell/supercapacitor hybrid power source[J]. J Power Sources,2011,196(1):313.
4 Payman A, Pierfederici S, Meibody-Tabar F. Energy control of supercapacitor/fuel cell hybrid power source[J].Energy Convers Ma-nage,2008,49(6):1637.
5 Huggins R A. Supercapacitors and electrochemical pulse sources[J]. Solid State Ion,2000,134(1):179.
6 Chen Yingfang, Li Yuanyuan, Deng Meigen. Principles and applications of supercapacitors[J]. Electron Components Mater,2008,27(4):6(in Chinese).
陈英放,李媛媛,邓梅根.超级电容器的原理及应用[J].电子元件与材料,2008,27(4):6.
7 马仁志,魏秉庆,徐才录,等.基于碳纳米管的超级电容器[J].中国科学:技术科学,2000,30(2):112.
8 Jiang Qi, Qu Meizhen, Zhang Bolan, et al. Progress of research on electrode materials for electrochemical supercapacitors[J]. J Inorg Mater,2002,17(4):649(in Chinese).
江奇,瞿美臻,张伯兰,等.电化学超级电容器电极材料的研究进展[J].无机材料学报,2002,17(4):649.
9 Cong H P, Ren X C, Wang P, et al. Flexible graphene-polyaniline composite paper for high-performance supercapacitor[J]. Energy Environ Sci,2013,6(4):1185.
10 Wang Z, Tammela P, et al. Solution-processed poly(3,4-ethylenedioxythiophene) nanocomposite paper electrodes for high-capacitance flexible supercapacitors[J]. J Mater Chem A,2016,4(5):1714.
11 Zhang Wei, Zhang Ying. Electrochemical behavior of electrode in activated carbon supercapacitor[J]. Chin Battery Ind,2010,15(1):22(in Chinese).
张伟,张莹.活性炭超级电容器电极的电化学行为[J]. 电池工业,2010,15(1):22.
12 Hai Yongqiang, Zhang Wenfeng, Wang Biyan, et al. Preparation and performance of activated carbon for supercapacitor[J]. Battery Bimonthly,2006,36(2):92(in Chinese).
海永强,张文峰,王碧燕,等.超级电容器用活性炭的制备及性能[J].电池,2006, 36(2):92.
13 Zhang Y Y, Zhang W H, Zhang X J. Situation of activited carbon research and new product development[J]. Clean Coal Technol,1999(3):24(in Chinese).
张意颖,张文辉,张学军.活性炭研究与新产品开发现状[J].洁净煤技术,1999(3):24.
14 Wei Na, Zhao Naiqin, Jia Wei. New progress in the fabrication and application of activated carbon[J]. J Mater Sci Eng,2003,21(5):777(in Chinese).
魏娜,赵乃勤,贾威.活性炭的制备及应用新进展[J].材料科学与工程学报,2003,21(5):777.
15 Semenchuk I. Activated carbon based supercapacitors[C]// International Conference Nanomaterials: Applications and Properties.Orleans,2014.
16 Tian Yanhong, Fu Xutao, Wu Borong. Development of porous carbon materials for electric double-layer capacitor [J]. Chin J Power Sources,2002,26(6):466(in Chinese).
田艳红,付旭涛,吴伯荣.超级电容器用多孔碳材料的研究进展[J].电源技术,2002,26(6):466.
17 Chen Weixiang, Chen Wenlu, Xu Zhude, et al. Characteristics of carbon nanotubes and high-quality composites [J]. Acta Mater Compos Sin,2001,18(4):1(in Chinese).
陈卫祥,陈文录,徐铸德,等.碳纳米管的特性及其高性能的复合材料[J]. 复合材料学报,2001,18(4):1.

18 Wu Feng, Xu Bin. Progress on the application of carbon nanotubes in supercapacitor[J]. New Carbon Mater,2006,21(2):176(in Chinese).
吴锋,徐斌.碳纳米管在超级电容器中的应用研究进展[J]. 新型炭材料, 2006, 21(2):176.
19 Pan H, Li J, Feng Y P. Carbon nanotubes for supercapacitor[J]. Nanosc Res Lett,2010,5(3): 654.
20 Yang M, Cheng B, Song H, et al. Preparation and electrochemical performance of polyaniline based carbon nanotubes as electrode material for supercapacitor[J]. Electrochim Acta, 2010,55(23):7021.
21 Wu H C, Lin Y P, Lee E, et al. High-performance carbon-based supercapacitors using Al current-collector with conformal carbon coating[J]. Mater Chem Phys,2009,117(1): 294.
22 Sumboja A, Wang X, Yan J, et al. Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode[J]. Electrochim Acta,2012,65(1): 190.
23 Nie Yanyan, Sun Xiaogang, Pang Zhipeng, et al. Study on carbon nanotubes conductive paper supercapacitor[J]. Mod Chem Ind,2015(8):105(in Chinese).
聂艳艳,孙晓刚,庞志鹏,等.碳纳米管导电纸超级电容器[J]. 现代化工,2015(8):105
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[3] 解伟荣, 周涵. 柔性电响应动态热辐射调控材料研究进展[J]. 材料导报, 2025, 39(1): 24110064-8.
[4] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[5] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[6] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[7] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[8] 张佳倩, 王坤俊, 杨超, 杨颂, 上官炬, 王冰凝, 刘守军. 浸渍活性炭吸附放射性碘甲烷后失活机理研究[J]. 材料导报, 2024, 38(7): 22090123-5.
[9] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[10] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[11] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[12] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[13] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[14] 曾杨武, 庄俊城, 杨楠. 可实现逻辑运算的柔性电路[J]. 材料导报, 2024, 38(24): 23070218-5.
[15] 谭海星, 林剑荣, 黄培源, 彭憬怡, 刘思, 陈建文, 徐华, 肖鹏. 柔性氧化物薄膜晶体管栅绝缘层的研究进展[J]. 材料导报, 2024, 38(23): 23050204-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed