Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 1-5    https://doi.org/10.11896/j.issn.1005-023X.2017.016.001
  材料研究 |
煤基三维石墨烯基电极在不同电解液中的电化学性能*
张亚婷1, 任绍昭1, 党永强1, 刘国阳1, 李可可1, 周安宁1, 邱介山2
1 西安科技大学化学与化工学院, 西安 710054;
2 西安交通大学化学工程与技术学院, 西安 710049
Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes
ZHANG Yating1, REN Shaozhao1, DANG Yongqiang1, LIU Guoyang1, LI Keke1, ZHOU Anning1, QIU Jieshan2
1 College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an 710054;
2 School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049
下载:  全 文 ( PDF ) ( 1936KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三维石墨烯材料具有独特的多孔网络连通结构,大的比表面积,良好的光、电、热、力学等性质,被认为是理想的电极材料。以廉价煤炭为原料,通过催化热处理、化学氧化及水热还原等技术制得三维煤基石墨烯宏观体;采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)和拉曼光谱等检测手段对样品形貌及结构进行表征;并进一步通过恒电流充放电(GCD)、循环伏安(CV)及交流阻抗(EIS)等技术研究了三维石墨烯材料在碱性(6 mol/L KOH)、酸性(1 mol/L H2SO4)及中性(1 mol/L Na2SO4)3种水系电解液中的电化学性能。结果表明,三维煤基石墨烯材料在酸性和碱性电解液中具有较高的比电容;其中,在6 mol/L KOH水系电解液中的比电容高达288.9 F/g,并具有较好的稳定性,充放电循环1 000次后材料的电容保持率为91.6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张亚婷
任绍昭
党永强
刘国阳
李可可
周安宁
邱介山
关键词:  煤基三维石墨烯  电极材料  电解液  电化学性能  超级电容器    
Abstract: 3D graphene holds promise as electrode materials for electric double layer capacitors due to its unique porous network structure, large specific surface area and excellent optical, electrical, thermal and mechanical properties. In this paper, 3D coal-based graphene (3D-CG) was prepared from coal by a combined technique involving the catalytic thermal treatment, modified Hummers method and one-step hydrothermal self-assembly method. The morphologies and structures of the samples were examined by TEM, SEM, XRD, FT-IR and Raman spectroscopy. Furthermore, the electrochemical properties of 3D-CG materials in 6 mol/L KOH, 1 mol/L H2SO4 and 1 mol/L Na2SO4 electrolyte were systematically studied by galvanostatic charge-discharge (GCD), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) tests. The results indicated the good capacitive performance and stability of 3D-CG, as the specific capacitance was 288.9 F/g in 6 mol/L KOH aqueous electrolyte, with a high retention ratio of 91.6% even after 1 000 cycles.
Key words:  3D coal-based graphene    electrode material    electrolyte    electrochemical performance    supercapacitor
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TB33  
  TQ53  
基金资助: 国家自然科学基金(21276207;U1203292)
作者简介:  张亚婷:女,1972年生,博士,教授,主要研究方向为煤炭洁净利用及煤基炭材料制备与应用 E-mail:isyating@163.com
引用本文:    
张亚婷, 任绍昭, 党永强, 刘国阳, 李可可, 周安宁, 邱介山. 煤基三维石墨烯基电极在不同电解液中的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 1-5.
ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes. Materials Reports, 2017, 31(16): 1-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.001  或          https://www.mater-rep.com/CN/Y2017/V31/I16/1
1 Novoselov K S, Firsov A A. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666.
2 Wan W, Li L, Zhao Z, et al. Graphene oxide: Ultrafast fabrication of covalently cross-linked multifunctional graphene oxide monoliths[J]. Adv Funct Mater,2014,24(31):4915.
3 Wu Z S, Zhou G, Yin L C, et al. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy,2012,1(1):107.
4 Hu H, Zhao Z, Zhou Q, et al. The role of microwave absorption on formation of graphene from graphite oxide[J]. Carbon,2012,50(9):3267.
5 Vivekchand S R C, Rout C S, Subrahmanyam K S, et al. Graphene-based electrochemical supercapacitors[J]. J Chem Sci,2008,120(1):9.
6 Fu C, Kuang Y, Huang Z, et al. Supercapacitor based on graphene and ionic liquid electrolyte[J]. J Solid State Electrochem,2011,15(11-12):2581.
7 Zhang K, et al. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes[J]. J Mater Chem,2011,21(20):7302.
8 Ma Y, Chen Y. Three-dimensional graphene networks: Synthesis, properties and applications[J]. National Sci Rev,2015,2(1):40.
9 Nardecchia S, Carriazo D, Ferrer M L, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications[J]. Chem Soc Rev,2013,42(2):794.
10 Zhang Y T, Zhou A N, Zhang X Q, et al. Preparation of the graphene from Taixi anthracite[J]. Coal Convers,2013,36(4):57(in Chinese).
张亚婷, 周安宁, 张晓欠,等. 以太西无烟煤为前驱体制备煤基石墨烯的研究[J]. 煤炭转化,2013,36(4):57.
11 Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. J Chem Phys,2003,53(3):1126.
12 Roldán S, Blanco C, Granda M, et al. Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes[J]. Angew Chem Int Ed,2011,50(7):1699.
13 Wang C, Sun L, Zhou Y, et al. P/N co-doped microporous carbons from H3PO4-doped polyaniline by in situ, activation for supercapacitors[J]. Carbon,2013,59(7):537.
14 Wu H Y, Zhang H Y, Zhang F H, et al. Synthesis of SnO2/RGO/PANI ternary composites and its electrochemical behaviors[J]. Mater Rev:Res,2012,26(11):54(in Chinese).
吴红英, 张海英, 张富海,等. SnO2/还原氧化石墨烯/聚苯胺三元复合物的合成及电化学性能[J]. 材料导报:研究篇,2012,26(11):54.
15 Sun H, et al. Bacteria promoted hierarchical carbon materials for high-performance supercapacitor[J]. Energy Environ Sci,2012,5(3):6206.
16 Niu Z, Luan P, Shao Q, et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polya-niline films for high performance supercapacitor electrodes[J]. Energy Environ Sci,2012,5(9):8726.
17 Ji H, Zhang L, Pettes M T, et al. Ultrathin graphite foam: A three-dimensional conductive network for battery electrodes[J]. Nano Lett,2012,12(5):2446.
18 Liu W W, Feng Y Q, Yan X B, et al. Superior micro-supercapacitors based on graphene quantum dots[J]. Adv Funct Mater,2013,23(33):4111.
19 Trudeau M L, et al. Advanced materials for energy storage[J]. Adv Mater,2010,22(8):28.
20 Chang Z, Wang H W, Hu Z A, et al. Synthesis of graphene with oxygen-containing functional groups via thermal expension and its electrochemical capacitive performances[J]. Mater Rev:Res,2012,26(9):49(in Chinese).
常郑, 王欢文, 胡中爱,等. 热膨胀制备含氧官能团化的石墨烯及其电化学电容性能[J]. 材料导报:研究篇,2012,26(9):49.
21 Huang Z N, Kou S Z, Jin D D, et al. Performance of Ni(OH)2/reduced graphene oxides composites for supercapacitors[J]. J Funct Mater,2015(5):5084(in Chinese).
黄振楠, 寇生中, 金东东,等. 氢氧化镍/还原氧化石墨烯复合物的超级电容性能[J]. 功能材料,2015(5):5084.
22 Dong L, Xu C, Yang Q, et al. High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles[J]. J Mater Chem A,2015,3(8):4729.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[3] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[4] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[5] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[6] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[7] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[8] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[9] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[10] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[11] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[12] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[13] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[14] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[15] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed