Research Progress of First-principles Calculations in Electrochemical Corrosion
WANG Yong1,2, ZHANG Weiwei1,2, LI Yongcun1,2, ZHANG Xuyun1,2, SUN Lili1,2,*
1 School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China 2 Heilongjiang Key Laboratory of Petroleum and Petrochemical Multiphase Treatment and Pollution Prevention, Daqing 163318, Heilongjiang, China
Abstract: The first-principle is a calculation method involving material science, physics, chemistry, computer science and artificial intelligence, which can study the properties of materials from a micro perspective. In recent years, first-principles calculations has been applied to the field of electrochemical corrosion of materials. It can analyze the micro scale mechanism of corrosion and oxidation at the atomic level, explain the nature of corrosion from the electronic level, and open up a new research area for corrosion science. Based on the investigation and analysis of current research, this paper expounds the basic methods of first-principles, and summarizes the research progress of first-principles calculations in the field of corrosion, such as adsorption and diffusion of surface, stability of passive film and interface, element doping and inclusion dissolution, corrosion inhibition and battery electrochemistry, and corrosion of high entropy alloy and amorphous metallic alloy. Besides, we summarize the existing problems in the application of first-principles in fields of corrosion science, and emphasize the urgency of in-depth research on direct cha-racterization of electrochemical process of corrosion, quantitative modeling and calculation of materials, construction model of amorphous structure, cross scale simulation of corrosion process and so on. Finally, the development direction of first-principles calculations in corrosion science is prospected. This paper aims to elaborate the effects of metal surface adsorption on corrosion performance, and discuss the stability and failure mechanism of passive film and interface. It can also reveal the essence of galvanic corrosion induced by element doping and precipitated phase, and understand the anticorrosion mechanism and design new corrosion inhibitors. It has important theoretical guiding significance to describe the dynamic evolution process of local structure in high entropy alloy or amorphous structure. This paper has very important theoretical guiding significance for application of first-principles in corrosion science.
1 Thomas L H. Proceedings of the Royal Society of London, 1927, 114(768), 561. 2 Fermi E. Accademia Nazionale dei Lincei, 1927, 6(4), 102. 3 Hohenberg P, Kohn W. Physical Review B, 1964, 136(3), 864. 4 Kohn W, Sham L J. Physical Review, 1965, 140(4A), A1133. 5 Car R, Parrinello M. Physical Review Letters, 1985, 55, 2471. 6 Wei X, Dong C F, Xu A N, et al. Materials China, 2018, 37(1), 1 (in Chinese). 魏薪, 董超芳, 徐奥妮, 等. 中国材料进展, 2018, 37(1), 1. 7 Zhao W, Wang J D, Liu F B, et al. Acta Physica Sinica, 2009, 58(5), 3352 (in Chinese). 赵巍, 汪家道, 刘峰斌, 等. 物理学报, 2009, 58(5), 3352. 8 Zhang D, Cheng Y H, Feng S Z, et al. Journal of Hebei University of Science and Technology, 2018, 39(1), 24 (in Chinese). 张冬, 程延海, 冯世哲, 等. 河北科技大学学报, 2018, 39(1), 24. 9 Liu G D, Liu Z X, Ao B Y, et al. Computational Materials Science, 2018, 144, 85. 10 Zhang Z J. Research on first-principles calculations and CO2 corrosion resistance of rare earth element doped Cr13 steel. Master’s Thesis, Northeast Petroleum University, China, 2016 (in Chinese). 张正江. Cr13钢掺杂稀土第一性原理计算及耐CO2腐蚀研究. 硕士学位论文, 东北石油大学, 2016. 11 Niu Q W. Electrodeposition and CO2 corrosion resistance of Y2O3/ZrO2 nanocomposite coatings. Ph. D. Thesis, China University of Petroleum(East China), China, 2018 (in Chinese). 牛庆玮. 电沉积Y2O3/ZrO2纳米复合镀层及耐CO2腐蚀机理研究. 博士学位论文, 中国石油大学(华东), 2018. 12 Wang Y, Li Y, Sun Z X, et al. Chemical Engineering & Machinery, 2014, 41(5), 541 (in Chinese). 王勇, 李洋, 孙振旭, 等. 化工机械, 2014, 41(5), 541. 13 Zhang F C, Li C F, Wen P, et al. Acta Physica Sinica, 2014, 63(22), 227101 (in Chinese). 张凤春, 李春福, 文平, 等. 物理学报, 2014, 63(22), 227101. 14 Hao Y L. Density functional theory study of brass intergranular stress corrosion mechanism in H2S environment. Master’s Thesis, China University of Petroleum(East China), China, 2018 (in Chinese). 郝义磊. H2S环境下黄铜晶间应力腐蚀机理的密度泛函理论研究. 硕士学位论文, 中国石油大学(华东), 2018. 15 Yang Z Y, Li M Z, Hao Y L, et al. Surface Technology, 2018, 47(8), 244 (in Chinese). 杨志勇, 李明哲, 郝义磊, 等. 表面技术, 2018, 47(8), 244. 16 Lu H J. The research on the adsorption of S/H and the corrosion resis-tance of high nitrogen steel. Master’s Thesis, Northeast Petroleum University, China, 2016 (in Chinese). 芦海俊. 高氮钢表面S、H原子吸附计算及耐蚀性研究. 硕士学位论文, 东北石油大学, 2016. 17 Xu F F. A first principle study of the mechanism of stainless steel nitriding surface on the corrosion resistance. Master’s Thesis, Dalian University of Technology, China, 2015 (in Chinese). 许斐范. 不锈钢渗氮表面耐腐蚀机理的第一性原理研究. 硕士学位论文, 大连理工大学, 2015. 18 Wang M M, Huang X Y, Li J, et al. Journal of Atomic and Molecular Physics, 2016, 33(1), 161 (in Chinese). 王萌萌, 黄晓玉, 李婧, 等. 原子与分子物理学报, 2016, 33(1), 161. 19 Zhang L L. Adsorption properties of iron and bilayer phosphorene surface:a first principle study. Master’s Thesis, Jilin University, China, 2017 (in Chinese). 张玲利. 铁和二维磷烯表面吸附的第一性原理研究. 硕士学位论文, 吉林大学, 2017. 20 Jiang F R, Cheng L F, Wei H J, et al. Ceramics International, 2019, 45(12), 15532. 21 Shao S C. Effects of water vapor on oxidation behavior of Ni-25Cr alloy at high temperature. Master’s Thesis, Hunan University, China, 2020 (in Chinese). 邵偲灿. 水蒸气对Ni-25Cr合金高温氧化行为的影响. 硕士学位论文, 湖南大学, 2020. 22 Zhu D D, Wang X L, Zhao J, et al. Corrosion Science, 2020, 177(12), 108963. 23 Chen L, Shi C, Li X, et al. Carbon, 2018, 130, 19. 24 Yao W J, Zhou S G, Wang Z X, et al. Applied Surface Science, 2020, 499, 143962. 25 Zhao W, Wang J D, Liu F B, et al. Chinese Science Bulletin, 2009, 54(6), 740 (in Chinese). 赵巍, 汪家道, 刘峰斌, 等. 科学通报, 2009, 54(6), 740. 26 Xu Y D, Zheng Y Y, Mao J H, et al. Journal of Southeast University(Natural Science Edition), 2016, 46(3), 619 (in Chinese). 徐亦冬, 郑颖颖, 毛江鸿, 等. 东南大学学报(自然科学版), 2016, 46(3), 619. 27 Zheng B J. Study on CO2/Cl- coadsorption characteristics of γ-Fe(111)surface based on first principles. Master’s Thesis, Northeast Petroleum University, China, 2018 (in Chinese). 郑冰洁. 基于第一性原理的γ-Fe(111)面CO2/Cl-共吸附特性研究. 硕士学位论文, 东北石油大学, 2018. 28 Nong Y M, Chen Z. Concrete, 2020(5), 24 (in Chinese). 农喻媚, 陈正. 混凝土, 2020(5), 24. 29 Liu X X, Han Q Y, Zhang Y, et al. Mineral Engineering Research, 2020, 35(3), 54 (in Chinese). 刘星星, 韩巧云, 张毅, 等. 矿业工程研究, 2020, 35(3), 54. 30 Tian G C, Yuan Q X. Chinese Journal of Engineering, 2021, 43(8), 1037 (in Chinese). 田国才, 袁青香. 工程科学学报, 2021, 43(8), 1037. 31 Li C Y. Research on interfacial damage behaviors and mechanisms of mineral processing equipment material under multiphase flow environment. Ph. D. Thesis, China University of Mining and Technology, China, 2020 (in Chinese). 李超永. 多相流环境下选矿设备材料的界面损伤行为与机理研究. 博士学位论文, 中国矿业大学, 2020. 32 Zhang B, Liu L, Li T S, et al. Journal of Materials Science & Technology, 2015, 31(12), 1198. 33 Ng M F, Blackwood D J, Jin H, et al. The Journal of Physical Chemistry C, 2020, 124(25), 13799. 34 Bouzoubaa A, Diawara B, Maurice V, et al. Corrosion Science, 2009, 51(9), 2174. 35 Li Y Y. Journal of Xi’an Shiyou University(Natural Science Edition), 2018, 33(4), 120 (in Chinese). 李媛媛. 西安石油大学学报 (自然科学版), 2018, 33(4), 120. 36 Wei X, Dong C, Yi P, et al. Corrosion Science, 2018, 136, 119. 37 Liu M, Jin Y, Leygraf C, et al. Journal of the Electrochemical Society, 2019, 166(11), C3124. 38 Ferrin P, Kandoi S, Nilekar A U, et al. Surface Science, 2012, 606(7-8), 679. 39 Kristinsdóttir L, Skúlason E. Surface Science, 2012, 606, 1400. 40 Li X L, Chen L, Liu H M, et al. Physical Chemistry Chemical Physics, 2017, 19, 26248. 41 Mi Z S, Chen L, Liu H M, et al. The Journal of Physical Chemistry C, 2021, 125(11), 6351. 42 Wei X, Dong C F, Chen Z H, et al. RSC Advances, 2016, 6, 27282. 43 Zhang Z W, Wang Q, Wang X, et al. Applied Surface Science, 2017, 396, 746. 44 Gao H, Yang Z F, Zhao J F, et al. Chinese Journal of Computational Physics, 2022, 39(1), 101(in Chinese). 高慧, 杨在发, 赵敬芬, 等. 计算物理, 2022, 39(1), 101. 45 Xue Z, Zhang X Y, Qin J Q, et al. Journal of Alloys and Compounds, 2020, 812, 8. 46 Yu H, Chen C, Jiang R, et al. The Journal of Physical Chemistry C, 2012, 116(48), 25478. 47 Lyu X H, Liu L L, Li J, et al. Rare Metal Materials and Engineering, 2020, 49(7), 2326 (in Chinese). 吕祥鸿, 刘乐乐, 李健, 等. 稀有金属材料与工程, 2020, 49(7), 2326. 48 Zhang J, Xu Q, Hu Y, et al. Carbon, 2019, 153, 104. 49 Koper M T M, Santen R A V. Journal of Electroanalytical Chemistry, 1999, 476(1), 64. 50 Janik M J, Taylor C D, Neurock M. Topics in Catalysis, 2007, 46(3-4), 306. 51 Trasatti S. Electrochimica Acta, 1991, 36(11-12), 1659. 52 Ma H, Chen X Q, Li R H, et al. Acta Materialia, 2017, 130, 137. 53 Zhang X Y, Zheng B J, Guo B, et al. Materials Reports, 2017, 31(9), 146 (in Chinese). 张旭昀, 郑冰洁, 郭斌, 等. 材料导报, 2017, 31(9), 146. 54 Zhang J, Su C M, Chen X P, et al. Materials Today Communications, 2021, 27, 102204. 55 Luo Z, Zhu H, Ying T, et al. Surface Science, 2018, 672, 68. 56 Ma H. First-principles modeling and application of electrochemical corrosion of metals and alloys. Ph. D. Thesis, University of Science and Technology of China, China, 2019 (in Chinese). 马会. 金属和合金电化学腐蚀的第一性原理计算建模及应用. 博士学位论文, 中国科学技术大学, 2019. 57 Zhou X, Yue Y C, Wang J S, et al. Titanium Industry Progress, 2020, 37(6), 17 (in Chinese). 周娴, 岳有成, 王劲松, 等. 钛工业进展, 2020, 37(6), 17. 58 Zhang X, Wei W Z, Cheng L, et al. Applied Surface Science, 2019, 475(5), 83. 59 Tang M, Wu K M, Liu J, et al. Materials, 2019, 12, 3359. 60 Lv W T, Yan L C, Pang X L, et al. Applied Surface Science, 2020, 501, 144027. 61 Wang J, Wang S Q. Acta Physico-Chimica Sinica, 2014, 30(3), 551 (in Chinese). 王健, 王绍青. 物理化学学报, 2014, 30(3), 551. 62 Qu M, Liu Y, Xiao Z B. Nonferrous Metals Science and Engineering, 2018, 9(6), 1 (in Chinese). 屈苗, 刘宇, 肖政兵. 有色金属科学与工程, 2018, 9(6), 1. 63 Kong M, Wu J J, Han T R, et al. Acta Physica Sinica, 2020, 69(2), 027101 (in Chinese). 孔敏, 吴静静, 韩天茹, 等. 物理学报, 2020, 69(2), 027101. 64 Duan Y H, Sun Y, He J H, et al. Acta Physica Sinica, 2012, 61(4), 299 (in Chinese). 段永华, 孙勇, 何建洪, 等. 物理学报, 2012, 61(4), 299. 65 Sumer A, Chaudhuri S. Corrosion, 2017, 73(5), 596. 66 Zhang Y, Bai P C, Cui X M, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(2), 361 (in Chinese). 张勇, 白朴存, 崔晓明, 等. 中国有色金属学报, 2019, 29(2), 361. 67 Li D. Correlation between corrosion behavior and microstructure of intermetallic phases in AZ91 magnesium alloy with rare earth. Master’s Thesis, Inner Mongolia University of Technology, China, 2016 (in Chinese). 李丹. 含稀土AZ91镁合金析出相腐蚀行为与其微结构的相关性. 硕士学位论文, 内蒙古工业大学, 2016. 68 Li Y Y. Investigating on corrosion sensitivity of Mg-RE alloys induced by stress and precipitated phase microstructure. Master’s Thesis, Xi’an Technological University, China, 2020 (in Chinese). 李瑶瑶. 应力及析出相微结构诱导镁稀土合金腐蚀敏感性的研究. 硕士学位论文, 西安工业大学, 2020. 69 Luo Z. Theoretical investigation on the corrosion resistance of Mg-Ge alloy. Master’s Thesis, Shanghai Jiao Tong University, China, 2018 (in Chinese). 罗哲. 镁锗合金耐腐蚀性能的理论研究. 硕士学位论文, 上海交通大学, 2018. 70 Ma D. Study on corrosion mechanism of biological magnesium alloy based on electronic work function theory. Master’s Thesis, Zhengzhou University, China, 2020 (in Chinese). 马荻. 基于电子功函数理论的生物镁合金腐蚀机理研究. 硕士学位论文, 郑州大学, 2020. 71 Guo L, Shen X, Kaya S, et al. Surface Technology, 2017, 46(4), 228. 72 Su H, Wang L, Wu Y, et al. Corrosion Science, 2020, 165, 108410. 73 Zhu Y Q, Sun Q Q, Wang Y, et al. Russian Journal of Physical Chemistry A, 2020, 94(9), 1877. 74 Zhang X Y, Wang X Y, Zhu F, et al. Chemistry, 2020, 83(8), 761 (in Chinese). 张旭昀, 王心英, 朱峰, 等. 化学通报, 2020, 83(8), 761. 75 Xu X T, Xu H W, Li W, et al. Journal of Molecular Liquids, 2021, 345, 117010. 76 Norio N, Satoshi S. Materials Science Forum, 2010, 654-656, 1662. 77 Wang J, Zhang Q, Qiu Y Q, et al. Chinese Journal of Engineering, 2017, 39(4), 487 (in Chinese). 王杰, 张覃, 邱跃琴, 等. 工程科学学报, 2017, 39(4), 487. 78 Zhang X Y, Kang Q X, Wang Y, et al. Chemical Engineering & Machinery, 2018, 45(4), 521 (in Chinese). 张旭昀, 康庆鑫, 汪洋, 等. 化工机械, 2018, 45(4), 521. 79 Zhang X Y, Wang W Q, Guo B, et al. Materials Reports, 2019, 33(3), 965 (in Chinese). 张旭昀, 王文泉, 郭斌, 等. 材料导报, 2019, 33(3), 965. 80 Ren L, Cheng Y, Wang Q, et al. Computational Materials Science, 2020, 182, 109762. 81 He X, Bresser D, Passerini S, et al. Nature Reviews Materials, 2021, (6), 1036. 82 Wang Y, Qin S P, Zhang H W, et al. Ordnance Material Science and Engineering, 2021, 44(6), 5 (in Chinese). 王勇, 秦善鹏, 张宏伟, 等. 兵器材料科学与工程, 2021, 44(6), 5 83 Zhang X Y, Kang Q X, Wang Y. Computational and Theoretical Chemistry, 2018, 1131(5), 25. 84 Kang Q X, Wang Y, Zhang X Y. Journal of Alloys and Compounds, 2019, 774(2), 1069. 85 Kang Q X, Zhang X Y, Wang Y, et al. Journal of Power Sources, 2019, 443, 227251. 86 Liu Q, Wang X Y, Huang Y B, et al. Materials Reports, 2019, 33(Z1), 392 (in Chinese). 刘谦, 王昕阳, 黄燕滨, 等. 材料导报, 2019, 33(Z1), 392. 87 Ma D C, Grabowski B, Kormann F, et al. Acta Materialia, 2015, 100, 90. 88 Liu Q, Wang X Y, Huang Y B, et al. Chinese Journal of Materials Research, 2020, 34(11), 868 (in Chinese). 刘谦, 王昕阳, 黄燕滨, 等. 材料研究学报, 2020, 34(11), 868. 89 Wang Y, Li M Y, Sun L L, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(1), 94 (in Chinese). 王勇, 李明宇, 孙丽丽, 等. 中国有色金属学报, 2020, 30(1), 94. 90 Marks N, McKenzie D R, Pailthorpe B A, et al. Physical Review B, 1996, 54 (14), 9703. 91 Hui X, Fang H Z, Chen G L, et al. Acta Materialia, 2009, 57(2), 376. 92 Wang T, Wu Y D, Si J J, et al. Metallurgical and Materials Transactions A, 2015, 46(6), 2381. 93 Bi F F. Magnetron sputtering deposition process and properties of amorphous carbon composite coating on metallic bipolar plates in PEMFCs. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2019 (in Chinese). 毕飞飞. 燃料电池金属极板非晶碳复合涂层磁控溅射工艺及性能实验研究. 博士学位论文, 上海交通大学, 2019. 94 Le W K. Investigation on corrosion resistance of Zr-based metallic glasses with the electron theory. Master’s Thesis, Lanzhou University of Technology, China, 2016 (in Chinese). 乐文凯. 锆基非晶合金耐腐蚀性能的电子理论研究. 硕士学位论文, 兰州理工大学, 2016. 95 Liu J F. Study on the corrosion resistance mechanism of Cu-Zr based amorphous alloys based on Fermi level. Master’s Thesis, Lanzhou University of Technology, China, 2018 (in Chinese). 刘建锋. 基于费米能级的Cu-Zr基非晶合金耐腐蚀性能的研究. 硕士学位论文, 兰州理工大学, 2018. 96 Wang Y, Sun L L. Preparation and corrosion resistance of amorphous nanocrystalline metallic coatings, Chemical Industry Press, China, 2021 (in Chinese). 王勇, 孙丽丽. 纳米晶涂层制备与腐蚀, 化学工业出版社, 2021. 97 Wang Y, Li M Y, Han Y Q, et al. Ordnance Material Science and Engineering, 2018, 41(3), 5 (in Chinese). 王勇, 李明宇, 韩永强, 等. 兵器材料科学与工程, 2018, 41(3), 5. 98 Wang W Q. Effect of nitrogen-doping on magnetic properties and corrosion behavior of Fe-Zr-B nanocrystalline alloys. Master’s Thesis, Nort-heast Petroleum University, China, 2019 (in Chinese). 王文泉. 氮掺杂对Fe-Zr-B纳米晶合金磁学性能及腐蚀行为影响研究. 硕士学位论文, 东北石油大学, 2019. 99 Wang Y, Li M Y, Zhu F, et al. Surface & Coating Technology 2020, 385(3), 125449.