Research Progress of Additive Manufacturing Ceramics and Metals Based on Light Curing Technique
SHEN Falei1,2, YIN Fengshi2, LI Xingchen1,2, DU Wenxiang1,2, GUO Nana1,2,*, FANG Xiaoying1,2,*
1 Institute of Additive Manufacturing, Shandong University of Technology, Zibo 255000, Shandong, China 2 School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
Abstract: Additive manufacturing is one of the most potential edge-cutting technologies in the current decades. As a branch of the additive manufactu-ring, the light curing technology possesses the advantages of high efficiency, low energy consumption and good manufacturing precision. It is considered to have a greater economic and technical significance that surpasses traditional manufacturing techniques, by overcoming the latter’s drawbacks-long production cycle, machining difficulties and high cost when producing metals and ceramics. The light curing technique for oxide ceramic materials has been extensively developed and improved for fabricating dense or porous ceramic parts in a variety of fields, such as mic-roelectronics components, photonic crystals, and orthopedic implants. However, the light curing of non-oxide ceramic and metals is not mature enough yet for industrial production, especially as the slurry preparation for ceramic and metallic materials is still challenging. The paper intends to review the research progress in the fabrication of oxide ceramics, non-oxide ceramics and metallic materials by light curing. The main technical challenges and possible solutions are proposed in terms of three primary stages, i.e., slurry preparation, light curing forming and post proce-ssing, with respect to the production of the above-mentioned three typical categories of materials. A brief outlook of the future development trends is also given.
1 Tofail S A M, Koumoulos E P, Bandyopadhyay A, et al. Materials Today, 2018, 21(1), 1562.
2 Tuan D N, Alireza K, Gabriele I, et al. Composites Part B:Engineering, 2018, 143, 172.
3 Bose S, Ke D X, Sahasrabudhe H, et al. Progress in Materials Science, 2018, 93, 45.
4 Satish P K, Nancharaih T, Subba R V V. Materials Today:Proceedings, 2018, 5(2), 3873.
5 Diener S, Zocca A, Günster J. Open Ceramics, 2021, 8, 100191.
6 Quan H Y, Zhang T, Xu H, et al. Bioactive Materials, 2020, 5(1), 110.
7 Zhao G, Hu K H, Feng Q, et al. Ceramics International, 2021, 47(12), 17719.
8 Wang X G, Zhou Y L, Zhou L, et al. Journal of the European Ceramic Society, 2021, 41(8), 4650.
9 Leigh S J, Purssell C P, Bowen J, et al. Sensors & Actuators:A. Phy-sical, 2011, 168(1), 66.
10 Soshu Kirihara, Toshiki Niki. International Journal of Applied Ceramic Technology, 2015, 12(1), 32.
11 Francesco Baino, Giulia Magnaterra, Elisa Fiume, et al. Journal of the American Ceramic Society, 2022, 105(3), 1648.
12 Li R, Chen H, Wang Y, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 115, 104255.
13 Chen Z, Li D, Zhou W, et al. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2010, 224(4), 641.
14 Lakhdar Y, Tuck C, Binner J, et al. Progress in Materials Science, 2021, 116, 100736.
15 Akash Bhatia, Anuj Kumar Sehgal. Materials Today:Proceedings, 2023, 81, 1060.
16 Attar H, Calin M, Zhang L C, et al. Materials Science & Engineering A, 2014, 593, 170.
17 Jayasheelan V, Samuel K, Ruth D G, et al. Materials Science & Engineering C, 2015, 46, 52.
18 Zhang J J, Wei L Y, Meng X X, et al. Ceramics International, 2020, 46(7), 8745.
19 Gao Y Q, Ding J J. Procedia Manufacturing, 2020, 48, 749.
20 Chen Z W, Li Z Y, Li J J, et al. Journal of the European Ceramic Society, 2019, 39(4), 661.
21 Reham B Osman, Albert J van der Veen, Dennis Huiberts, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 521.
22 Leite de Camargo Italo, Morais Mateus Mota, Fortulan Carlos Alberto, et al. Ceramics International, 2021, 47(9), 11906.
23 Setareh Zakeri, Minnamari Vippola, Erkki Levänen. Additive Manufacturing, 2020, 35, 101177.
24 Rasaki S A, Xiong D Y, Xiong S F, et al. Journal of Advanced Cera-mics, 2021, 10, 442.
25 Chang Woo Gal, Joo Won Oh, Gi Woung Song, et al. Ceramics International, 2019, 45(14), 16982.
26 Badev A, Abouliatim Y, Chartier T, et al. Journal of Photochemistry & Photobiology A:Chemistry, 2011, 222(1), 117.
27 Pfeiffer Stefan, Florio Kevin, Puccio Dario, et al. Journal of the Euro-pean Ceramic Society, 2021, 41(13), 6087.
28 Nie J B, Li M S, Liu W W, et al. Journal of the European Ceramic Society, 2020, 41(1), 646.
29 Xing H Y, Zou B, Liu X Y, et al. Powder Technology, 2020, 359, 314.
30 Adrián Blas Romero, Markus Pfaffinger, Gerald Mitteramskogler, et al. The International Journal of Advanced Manufacturing Technology, 2017, 88, 1547.
31 Ding M M, Shi Y, Xie J J, et al. International Journal of Applied Ceramic Technology, 2020, 17(1), 285.
32 Xing Z W, Liu W W, Chen Y, et al. Ceramics International, 2018, 44(16), 19939.
33 Anton Sotov, Artem Kantyukov, Anatoly Popovich, et al. Ceramics International, 2021, 47(21), 30358.
34 Wang Z, Huang C Z, Wang J, et al. Ceramics International, 2019, 45(3), 3902.
35 Jennifer A L. Journal of the American Ceramic Society, 2000, 83(10), 2341.
36 Diptanshu, Miao G X, Ma C. Manufacturing Letters, 2019, 21, 20.
37 Mei F S, Yuan T C, Li R D, et al. International Journal of Applied Ceramic Technology, 2018, 15(1), 89.
38 Wozniak M, de Hazan Y, Graule T, et al. Journal of the European Ceramic Society, 2011, 31(13), 2221.
39 Wu H D, Cheng Y L, Liu W, et al. Ceramics International, 2016, 42(15), 17290.
40 Song Se Yeon, Park Min Soo, Lee Doojin, et al. Materials & Design, 2019, 180(15), 107960.
41 Gerald Mitteramskogler, Robert Gmeiner, Ruth Felzmann, et al. Additive Manufacturing, 2014, 1-4, 110.
42 Conti L, Bienenstein D, Borlaf M, et al. Materials, 2020, 13(6), 1317.
43 Kovacev N, Li S, Essa K, et al. Journal of the European Ceramic Society, 2021, 41(15), 7734.
44 Tumbleston J R, Shirvanyants D, Ermoshkin N, et al. Science, 2015, 347(6228), 1349.
45 Janusziewicz R, Tumbleston J R, Quintanilla A L, et al. Proceedings of the National Academy of Sciences, 2016, 113(42), 11703.
46 Zhang G M, Jiang J, Wang H, et al. Journal of Manufacturing Processes, 2021, 64, 341.
47 Wang K, Qiu M B, Jiao C, et al. Ceramics International, 2020, 46(2), 2438.
48 Li H, Liu Y S, Liu Y S, et al. Ceramics International, 2021, 47(4), 4884.
49 Santoliquido O, Camerota F, Ortona A. Open Ceramics, 2021, 5, 100059.
50 Liu W, Wu H, Tian Z, et al. Journal of the American Ceramic Society, 2019, 102(5), 2257.
51 Jheison Lopes dos Santos, Rubens Lincoln Santana Blazutti Maral, Paulo Roberto Rodrigues de Jesus, et al. Journal of Materials Research and Technology, 2018, 7(4), 592.
52 Débora C N F, Mariana B P, Juliana A, et al. Materials Science & Engineering A, 2020, 781, 139237.
53 Zhang K Q, He R J, Ding G J, et al. Ceramics International, 2020, 47(2), 2303.
54 Li Y H, Wang M L, Wu H D, Journal of the European Ceramic Society, 2019, 39(15), 4921.
55 He C, Ma C, Li X L, et al. Additive Manufacturing, 2021, 46, 102111.
56 Wang X F, Schmidt F, Hanaor D, et al. Additive Manufacturing, 2019, 27, 80.
57 Hazan Y D, Penner D. Journal of the European Ceramic Society, 2017, 37(16), 5205.
58 Tang J, Yang Y, Huang Z R. Materials Reports, 2021, 35(Z1), 172(in Chinese).
唐杰, 杨勇, 黄政仁. 材料导报, 2021, 35(Z1), 172.
59 Eckel Z C, Zhou C Y, Martin J H, et al. Science, 2016, 351(6268), 58.
60 Chen J S, Wang Y J, Pei X L, et al. Ceramics International, 2020, 46(9), 13066.
61 Ding G J, He R J, Zhang K Q, et al. Ceramics International, 2020, 46(4), 4720.
62 Hu C Q, Chen Y F, Liu H L, et al. Ceramics International, 2021, 47(9), 12442.
63 Tang J, Guo X T, Chang H T, et al. Journal of the European Ceramic Society, 2021, 41(15), 7516.
64 Huang R J, Jiang Q J, Wu H D, et al. Ceramics International, 2019, 45(4), 5158.
65 Jin E Z, Ma D H, Yuan Z H, et al. Scanning, 2020, 2020, 8840963.
66 Liu Y, Zhan L N, Wen L, et al. Journal of the European Ceramic Society, 2020, 41(4), 2386.
67 Lin L F, Wu H D, Xu Y R, et al. Materials Chemistry and Physics, 2020, 249, 122969.
68 Candelario V M, Moreno R, Shen Z J, et al. Journal of the European Ceramic Society, 2016, 37(5), 1929.
69 Xu T T, Cheng S, Jin L Z, et al. International Journal of Applied Ceramic Technology, 2020, 17(2), 438.
70 Zhang H, Yang Y, Liu B, et al. Ceramics International, 2019, 45(8), 10800.
71 Bai X J, Ding G J, Zhang K Q, et al. Open Ceramics, 2021, 5, 100046.
72 Zhang H, Yang Y, Hu K H, et al. Additive Manufacturing, 2020, 34, 101199.
73 Rieger T, Schubert T, Schurr J, et al. Powder Technology, 2021, 383, 498.
74 Zhang Y B, Li S, Zhao Y T, et al. Additive Manufacturing, 2021, 39, 101897.
75 Wang H J, Chen C G, Yang F, et al. Materials Today Communications, 2021, 26, 102037.
76 Shahzad Aamir, Lazoglu Ismail. Composites Part B:Engineering, 2021, 225(15), 109249.
77 Tu R W, Sodano H A. Additive Manufacturing, 2021, 46, 102180.
78 Nguyen H X, Suen H, Poudel B, et al. CIRP Annals-Manufacturing Technology, 2020, 69(1), 177.
79 Shang F, Wang Z Y, Chen X Q, et al. Vacuum, 2021, 184, 109910.
80 Dehghan-Manshadi A, Bermingham M J, Dargusch M S, et al. Powder Technology, 2017, 319, 289.
81 Gu J H, Qiao L, Cai W, et al. Journal of Magnetism and Magnetic Materials, 2021, 530, 167931.
82 Shi Yeon Kim, Dong-Hun Yeo, Hyo-Soon Shin, et al. Ceramics International, 2019, 45(14), 17930.
83 German R M. Materials, 2013, 6(8), 3641.
84 Satyajit B, Claus J J. Key Engineering Materials, 2016, 704, 113.
85 Jaroslav Málek, František Hnilica, Jaroslav Veselý, et al. Materials Characterization, 2014, 96, 166.
86 Roger Pelletier, Louis Philippe Lefebvre, Eric Baril. Key Engineering Materials, 2016, 704, 139.
87 Dehghan-Manshadi A, Yu P, Dargusch M, et al. Powder Technology, 2020, 364(15), 189.
88 Zhang Y Y, Bian T Y, Shen X T, et al. Journal of Alloys and Compounds, 2021, 868, 158711.