Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22090281-8    https://doi.org/10.11896/cldb.22090281
  无机非金属及其复合材料 |
面向碳中和的汽车生命周期材料发展与展望
吴国荣*, 黄诗雯, 郭跃, 陈旭辉, 宋佳鑫
南昌大学建筑与设计学院,南昌 330031
Development and Prospect of Carbon Neutral Automotive Life-cycle Materials
WU Guorong*, HUANG Shiwen, GUO Yue, CHEN Xuhui, SONG Jiaxin
School of Architecture and Design, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 7632KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着气候变化、能源危机问题逐步严重,低碳出行成为各国发展的主旋律和新一轮国家经济竞争的制高点。汽车工业作为国民经济的支柱产业,加速对汽车全生命周期节能减排的研发可有效破除我国全球碳贸易壁垒,进而实现汽车强国的发展目标。轻量化设计是减少环境污染、提升产品节能性和环保性的有效途径,已成为当下汽车全生命周期可持续发展的重要内容。本文通过对汽车在全生命周期中的材料使用情况、回收情况进行比较分析得出热塑性复合材料具有高性能、低密度等优异特性,伴随着大批量自动化、3D打印增量技术的广泛推广,可实现汽车从材料制造、整车制造到使用等各阶段的碳减排,且该材料的使用符合未来汽车行业轻量化与模块化绿色设计的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴国荣
黄诗雯
郭跃
陈旭辉
宋佳鑫
关键词:  汽车生命周期  碳中和  碳排放  碳纤维复合材料    
Abstract: With climate change and energy crisis becoming increasingly serious, low-carbon travel is becoming the main theme of national development and the commanding elevation of a new round of national economic competition. As automobile industry is the pillar industry of the national economy, accelerating the research and development of energy conservation and emission reduction in the whole life cycle of automobiles can effectively break down China's global carbon trade barriers in order to achieve the development goal of becoming a powerful automobile country. It is compared and analyzed in this paper for the use and recycling of materials in the whole life cycle of automobiles what is concluded that thermoplastic composites have excellent properties such as high-performance and low density. With mass automation and the extensive promotion of 3D-printing incremental technique, it can be achieved for carbon emission reduction in all stages of automobile from material manufacturing, vehicle manufacturing to car use. Besides, the use of this material conforms to the development trend of light and modular green design in the future automobile industry.
Key words:  automobile lifecycle    carbon neutrality    carbon emission    carbon fiber composites
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TB3  
通讯作者:  *吴国荣,硕士研究生导师,就职于南昌大学艺术与设计学院工业设计系。1997 年毕业于天津美术学院,获学士学位; 2013 年毕业于青岛大学艺术与设计学院,取得硕士学位。主要从事产品造型设计与设计学理论教学。发表核心期刊 论文20余篇,其中 SCI 2篇、EI 4篇。Wugr1973@163.com   
引用本文:    
吴国荣, 黄诗雯, 郭跃, 陈旭辉, 宋佳鑫. 面向碳中和的汽车生命周期材料发展与展望[J]. 材料导报, 2023, 37(19): 22090281-8.
WU Guorong, HUANG Shiwen, GUO Yue, CHEN Xuhui, SONG Jiaxin. Development and Prospect of Carbon Neutral Automotive Life-cycle Materials. Materials Reports, 2023, 37(19): 22090281-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090281  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22090281
1 Chen H, Mou Y. Journal of Chongqing Technology and Business University(Natural Science Edition), 2023, 40(2), 7.
陈欢, 牟瑛. 重庆工商大学学报(自然科学版), 2023, 40(2), 7.
2 Hao J M, Tian J P, Lu W Y, et al. China Engineering Science, 2022, 24(1), 155.
郝吉明, 田金平, 卢琬莹, 等. 中国工程科学, 2022, 24(1), 155.
3 Yang D C, Jia Y, Liu Z Q. Materials Reports, 2020, 34(S2), 476 (in Chinese).
杨登才, 贾彦, 刘自钦. 材料导报, 2020, 34(S2), 476.
4 Ulucak R. Renewable and Sustainable Energy Reviews, 2021, 150, 111433.
5 Wu G R, Yang M L. Product modeling design (2nd edition), Wuhan University of Technology Press, China, 2010, pp. 3 (in Chinese).
吴国荣, 杨明朗. 产品造型设计(第二版), 武汉理工大学出版社, 2010, pp. 3.
6 Wang Z, Xu Z, Huang L Y. Surface Technology, 2019, 48(6), 338 (in Chinese).
王增, 徐震, 黄凌宇. 表面技术, 2019, 48(6), 338.
7 Setia W, Indra C D. Energy Policy, 2021, 150, 112135.
8 Wu G R, Chen X H. Materials Reports, 2021, 35(19), 19181(in Chinese).
吴国荣, 陈旭辉. 材料导报, 2021, 35(19), 19181.
9 Zhang F. Design, 2020, 33(22), 77(in Chinese).
张帆. 设计, 2020, 33(22), 77.
10 Teng D. Material Protection, 2020, 53(9), 176 (in Chinese).
滕丹. 材料保护, 2020, 53(9), 176.
11 Wang C L, Hu H, Qiao W Y, et al. Plastics Industry, 2021, 49(10), 42(in Chinese).
王晨蕾, 胡浩, 乔雯钰, 等. 塑料工业, 2021, 49(10), 42.
12 Long S H, Zhao S L. Auto Parts, 2019(7), 50(in Chinese).
龙苏华, 赵松岭. 汽车零部件, 2019(7), 50.
13 Huang Y, Luo J X, Guo C F, et al. Special Casting and Non-ferrous Alloy, 2021, 41 (8), 1040(in Chinese).
黄毅, 罗继相, 郭称发. 特种铸造及有色合金, 2021, 41(8), 1040.
14 Qin H. Research on key issues of the lightweight design of the body's concept. Ph. D. Thesis, Hunan University, China, 2018 (in Chinese).
秦欢. 车身正向概念轻量化设计关键问题研究. 博士学位论文, 湖南大学, 2018.
15 Chen Y S, Lan L B, Hao Z, et al. Journal of Automotive Engineering, 2022, 12(4), 360(in Chinese).
陈轶嵩, 兰利波, 郝卓, 等. 汽车工程学报, 2022, 12(4), 360(in Chinese).
16 Wu G H, Li H S, Li F, et al. Energy Storage Science and Technology, 2022, 11(7), 2206(in Chinese).
武光华, 李宏胜, 李飞, 等. 储能科技, 2022, 11(7), 2206.
17 Li B. Chinese Entrepreneurs, 2020(1), 89(in Chinese).
李斌. 中国企业家, 2020(1), 89.
18 Chen X. Research on environmental benefits of electric vehicles based on the life cycle of coal power. Master's Thesis, Wuhan University of Technology, China, 2018 (in Chinese).
陈行. 基于煤电生命周期的电动汽车环境效益研究. 硕士学位论文, 武汉理工大学, 2018.
19 Yu N. Research on comprehensive evaluation of ecological design of automobile products facing life cycle. Ph. D. Thesis, Hunan University, China, 2019 (in Chinese).
俞宁. 面向生命周期的汽车产品生态设计综合评价研究. 博士学位论文, 湖南大学, 2019.
20 He W T, Hao X L, Chen F, et al. Journal of Northeast University of Finance and Economics, 2022(2), 29(in Chinese).
何文韬, 郝晓莉, 陈凤, 等. 东北财经大学学报, 2022(2), 29.
21 Zhang S T, Liu S F, Wang S J, et al. Packaging engineering, 2022, 43 (12), 208 (in Chinese).
张书涛, 刘世锋, 王世杰, 等. 包装工程, 2022, 43(12), 208.
22 Yang J M, Li S, Gong C. Packaging Engineering, 2021, 42(20), 29(in Chinese).
杨建明, 李洒, 巩超. 包装工程, 2021, 42(20), 29.
23 Zhu Y L, Chen D H, Gao F, China Development, 2022, 22 (4), 69(in Chinese).
朱豫礼, 陈棣华, 高峰. 中国发展, 2022, 22(4), 69.
24 Cand D. International Journal of Hydrogen Energy, 2021, 46, 35961.
25 Kolar J W, Krismer F, Lobsiger Y, et al. In:2012 7th International Conference on Integrated Power Electronics Systems (CIPS). Nuremberg, Germany, 2012, pp.1.
26 Jian Y J, Lin F, Zheng M. Shanghai Paint, 2021, 59(5), 47(in Chinese).
简云久, 林帆, 郑敏. 上海涂料, 2021, 59(5), 47.
27 Zhou Y L, Gong B G, Zhang X Q. Journal of Chaohu College, 2014, 16 (3), 92 (in Chinese).
周亚兰, 龚本刚, 张孝琪. 巢湖学院学报, 2014, 16(3), 92.
28 Xiong Y L. Research on energy consumption of automobile manufacturing enterprises in Beijing. Master's Thesis, Beijing University of Technology, China, 2013 (in Chinese).
熊一龙. 北京市汽车制造企业能源消耗研究. 硕士学位论文, 北京工业大学, 2013.
29 Li J, Chen L, Wang R R, et al. China Coatings, 2022, 37(4), 58(in Chinese).
李杰, 陈林, 王冉冉, 等. 中国涂料, 2022, 37(4), 58.
30 Yu X B, Tao L, Zhang W Y. Modern Paints and Coatings, 2022, 25(1), 69(in Chinese).
余晓波, 陶磊, 张皖阳. 现代涂料与涂装, 2022, 25(1), 69.
31 Zhao Z J, Zhang P, Zhao M N, et al. China Population-Resources and Environment, 2017, 27(S1), 186(in Chinese).
赵振家, 张鹏, 赵明楠, 等. 中国人口·资源与环境, 2017, 27(S1), 186.
32 Zhang Y F, Duan L B, Lu J, et al. Journal of Shenzhen University (Science and Technology Edition), 2021, 38(6), 670(in Chinese).
张亚芳, 段莉斌, 卢娟, 等. 深圳大学学报(理工版), 2021, 38(6), 670.
33 Xu J Q. Comprehensive benefit evaluation of the whole life cycle of automotive products. Ph. D. Thesis. Hunan University, China, 2014(in Chinese).
徐建全. 汽车产品全生命周期综合效益评价研究. 博士学位论文, 湖南大学, 2014.
34 Zhuang H. Research on green attributes of pure electric vehicles. Master's Thesis, Nanchang University, China, 2016(in Chinese).
庄泓. 纯电动汽车绿色属性研究. 硕士学位论文, 南昌大学, 2016.
35 Ding T, Zeng Q L. Environmental Engineering, 2014, 32(S1), 721(in Chinese).
丁涛, 曾庆禄. 环境工程, 2014, 32(S1), 721.
36 Lei N X, Geng H S. Assembly Technology and Production Modernization, 2021, 38(3), 47(in Chinese).
雷乃旭, 耿红生. 成组技术与生产现代化, 2021, 38(3), 47.
37 Xu Z M. Science and Technology Wind, 2018(8), 4(in Chinese).
许子明. 科技风, 2018(8), 4.
38 Zhang S L. Science and Technology Entrepreneurship Monthly, 2017, 30(10), 137(in Chinese).
张绍丽. 科技创业月刊, 2017, 30(10), 137.
39 Wang L, Wang X L. Journal of Functional Polymers, 2014, 27(4), 453(in Chinese).
王丽, 王新灵. 功能高分子学报, 2014, 27(4), 453.
40 Liu X H, Xu S M, Zhang F. Journal of Polymer Science, 2022, 53(9), 1005(in Chinese).
刘雪辉, 徐世美, 张帆. 高分子学报, 2022, 53(9), 1005.
41 Jiang L R. Research on the high temperature fretting wear properties of 690 alloy and its TiN+TiCN+TiN coatings. Master's Thesis, Southwest Jiaotong University, China, 2016, (in Chinese).
蒋利荣. 690合金及其TiN+TiCN+TiN涂层的高温微动磨损性能研究. 硕士学位论文, 西南交通大学, 2016.
42 Li B, Fan W, Xing Z, et al. Journal of Textile Research, 2022, 43(1), 15(in Chinese).
李博, 樊威, 高兴忠等. 纺织学报, 2022, 43(1), 15.
43 Li L X, Yue G Q, Yang Y, et al. Composite Materials Science and Engineering, 2021(2), 24(in Chinese).
李林秀, 岳广全, 杨洋, 等. 复合材料科学与工程, 2021(2), 24.
44 Jia H B, Wang Y T, Zhang Z H, et al. New Chemical Materials, 2022, 50 (5), 62(in Chinese).
贾海波, 王永涛, 张政和, 等. 化工新型材料, 2022, 50(5), 62.
45 Hu W J, Zhong M J, Yang Y, et al. Materials Reports, 2021, 35 (S2), 627(in Chinese).
胡炜杰, 钟明建, 杨营, 等. 材料导报, 2021, 35(S2), 627.
46 Zheng L, Wu F, Tan K J. Journal of Southwest University (Natural Science Edition), 2014, 36 (1), 78(in Chinese).
郑莉, 吴飞, 谭克俊. 西南大学学报(自然科学版), 2014, 36(1), 78.
47 Xi X F. Hydrothermal carbon surface modification of carbon fibers and its interfacial enhancement of composites. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2019(in Chinese).
席先锋. 碳纤维的水热碳表面改性及其对复合材料的界面增强作用. 博士学位论文, 中国科学院大学, 2019.
[1] 周美洁, 艾立群, 洪陆阔, 孙彩娇, 周玉青, 孟凡峻. 氢冶金基础研究和新工艺探索[J]. 材料导报, 2023, 37(13): 21080052-6.
[2] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[3] 陈琨, 张祥林, 安子乾, 程羽佳, 程小全, 冯振宇. 温度对碳纤维平纹布正交层合板拉伸疲劳性能的影响[J]. 材料导报, 2021, 35(16): 16195-16200.
[4] 魏玉鹏, 朱俊志, 蔺景鹏, 申永前, 江恬恬, 李庆林, 王海燕, 喇培清. 碳微/纳米纤维复合微波吸收材料的研究进展[J]. 材料导报, 2021, 35(15): 15205-15211.
[5] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[6] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[7] 李红, 刘旭升, 张宜生, JacekSenkara, 李光瀛, 马鸣图. 新能源电动汽车异种材料连接技术的挑战、趋势和进展[J]. 材料导报, 2019, 33(23): 3853-3861.
[8] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[9] 王彦静, 刘宇, 崔素萍, 王志宏. 我国建筑陶瓷行业碳排放及减排潜力分析[J]. 材料导报, 2018, 32(22): 3967-3972.
[10] 高思雯, 龚先政, 孙博学. 典型锂电池中间相炭微球负极材料生产的能耗与碳排放分析[J]. 材料导报, 2018, 32(22): 4022-4026.
[11] 崔海坡, 张梦雪, 张阿龙. 碳纤维复合材料假脚冲击后疲劳性能影响因素分析*[J]. 《材料导报》期刊社, 2017, 31(18): 150-154.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed