Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21050009-12    https://doi.org/10.11896/cldb.21050009
  无机非金属及其复合材料 |
混凝土中水泥浆体与骨料界面过渡区的形成和改进综述
黄燕, 胡翔, 史才军*, 吴泽媚
湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室,湖南省绿色先进土木工程材料国际创新中心,长沙 410082
Review on the Formation and Improvement of Interfacial Transition Zone Between Cement Paste and Aggregate in Concrete
HUANG Yan, HU Xiang, SHI Caijun*, WU Zemei
International Innovation Center for Green & Advanced Civil Engineering Materials of Hunan Province, Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 37641KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 界面过渡区是水泥浆与骨料之间的薄层部分,具有孔隙率高、氢氧化钙晶体富集和定向排列等特点。其形成机理主要包括边壁效应、微区泌水效应、离子迁移和成核效应、单边生长效应、絮凝成团效应及脱水收缩效应。各种效应协同作用,导致界面过渡区成为混凝土最薄弱的环节。提高界面过渡区的粘结性能有利于改善混凝土的力学性能和耐久性。本文综述了常用的界面过渡区改进方法,即掺加矿物掺合料和纳米材料、改性骨料、生物矿化以及二氧化碳养护等,并比较了不同改进方法的优缺点,可为界面过渡区的形成机理和改进方法的研究及其在实际工程中的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄燕
胡翔
史才军
吴泽媚
关键词:  水泥基材料  界面过渡区  形成机理  改进方法    
Abstract: The interfacial transition zone (ITZ), a thin layer formed between cement matrix and aggregate, generally has the properties of larger porosity and enrichment of the oriented calcium hydroxide crystals. The formation mechanism of ITZ mainly includes the wall effect, micro-bleeding effect, ion migration and nucleation effect, one-sided growth effect, flocculation effect and syneresis effect, and the synergistic effects of these effects makes the ITZ the weakest point of concrete. Therefore, it will be beneficial for the mechanical properties and durability of concrete if the bonding strength of ITZ can be enhanced. Commonly used methods for improvement of ITZ bonding strength, including incorporation of mineral admixtures or nanomaterials, aggregates modification, biomineralization and carbon dioxide curing, are summarized and compared in this study. This study will provide a reference for the study on formation mechanism and modification of ITZ and its application in practical engineering.
Key words:  cement-based material    interfacial transition zone    formation mechanism    improvement method
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TU528  
通讯作者:  * 史才军,第二批国家特聘专家,湖南省特聘专家,亚洲混凝土联合会副主席,湖南大学首席教授、博士研究生导师,在水泥和混凝土材料的设计、测试、耐久性、智能防渗漏材料及废物的利用和处置方面做了广泛深入的研究工作,发表高水平学术论文400 余篇。出版英文著作9部、中文著作4 部,合编国际会议英文论文集8本。2015—2019年“建设与建造”领域中国高被引学者,2016 年全球土木工程领域高被引学者,2001 年、2007 年和2016 年分别当选为国际能源研究会、美国混凝土学会及国际材料与结构联合会的会士(Fellow)。cshi@hnu.edu.cn   
作者简介:  黄燕,2018年6月毕业于南昌航空大学,获得工学学士学位。现为湖南大学土木工程学院博士研究生,在史才军教授的指导下进行研究。目前主要研究领域为二氧化碳养护对骨料与浆体界面过渡区的影响。
引用本文:    
黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
HUANG Yan, HU Xiang, SHI Caijun, WU Zemei. Review on the Formation and Improvement of Interfacial Transition Zone Between Cement Paste and Aggregate in Concrete. Materials Reports, 2023, 37(1): 21050009-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050009  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21050009
1 Scrivener K L, Crumbie A K, Laugesen P. Interface Science, 2004, 12, 411.
2 Branch J L, Epps R, Kosson D S. Cement and Concrete Research, 2018, 103, 170.
3 Xiong Y, Yin J. Applied Mechanics and Materials, 2016, 847, 544.
4 Wu K, Long J F, Xu L L, et al. Construction and Building Materials, 2019, 223(30), 1063.
5 Rao G A, Prasad B K R. Materials and Structures, 2004, 37, 328.
6 Wang M, Xie Y J, Long G C, et al. Construction and Building Materials, 2019, 221(10), 151.
7 Jebli M, Jamin F, Malachanne E, et al. Construction and Building Materials, 2018, 161, 16.
8 Jebli M, Jamin F, Garcia-Diaz E, et al. Cement and Concrete Composites, 2016, 73, 241.
9 Königsberger M, Hlobil M, Delsaute B, et al. Cement and Concrete Research, 2018, 103, 77.
10 Asahina D, Landis E N, Bolander J E. Cement and Concrete Composites, 2011, 33, 966.
11 Wang Y, Zeng D, Ueda T, et al. Construction and Building Materials, 2021, 293, 123472.
12 Jiang L. Cement and Concrete Composites, 1999, 21, 313.
13 Chen H S, Sun W, Stroeven P. Journal of Chinese Ceramic Society, 2004, 32(1), 70(in Chinese).
陈惠苏, 孙伟, Stroeven P. 硅酸盐学报, 2004, 32(1), 70.
14 Berger R L, Cahn D S, Mcgregor J D. Journal of American Ceramic Society, 1970, 53, 57.
15 Lin J J, Chen H S, Zhang R L, et al. Materials Characterization, 2019, 154, 335.
16 Luo Z Y, Li W G, Wang K J, et al. Cement and Concrete Research, 2021, 143, 106392.
17 Scrivener K L, Crumbie A K, Pratt P L. MRS Proceedings, 1987, 114, 87.
18 Wang B, Yan L, Fu Q, et al. Resources, Conservation and Recycling, 2021, 171, 105565.
19 Fang G H, Zhang M Z. Cement and Concrete Research, 2020, 129, 105963.
20 Ma H, Li Z J. ACI Materials Journal, 2014, 111(2), 189.
21 He R, Zheng S N, Gan V J L, et al. Construction and Building Materials, 2020, 255(20), 119340.
22 Elsharief A, Cohen M D, Olek J. Cement and Concrete Research, 2003, 33, 1837.
23 Šmilauer V, Bittnar Z. In: 2nd International RILEM Symposium on Advances in Concrete Through Science and Engineering. Quebec City, Canada, 2006.
24 Gao Y, De Schutter G, Ye G, et al. Construction and Building Materials, 2013, 41, 742.
25 Gao Y, De Schutter G, Ye G. Cement and Concrete Research, 2013, 52, 149.
26 Chen H S, Sun W, Zhao Q X, et al. Journal of Chinese Ceramic Society, 2005, 33(4), 484(in Chinese).
陈惠苏, 孙伟, 赵庆新, 等. 硅酸盐学报, 2005, 33(4), 484.
27 Chen H S, Zhu Z G, Liu L, et al. Powder Technology, 2016, 289, 1.
28 Zhu Z G, Provis J L, Chen H S. Powder Technology, 2018, 326, 168.
29 Caliskan S. Cement and Concrete Composites, 2003, 25, 557.
30 Caliskan S, Karihaloo B L. Interface Science, 2004, 12, 361.
31 Lyu K, She W, Chang H L, et al. Construction and Building Materials, 2020, 248, 118559.
32 Sharma M, Bishnoi S. Construction and Building Materials, 2020, 246, 118381.
33 Xu W X, Lv Z, Chen H S. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 416.
34 Shi H S, Sun D D, Wu K. Journal of Chinese Ceramic Society, 2016, 44(5), 678(in Chinese).
施惠生, 孙丹丹, 吴凯. 硅酸盐学报, 2016, 44(5), 678.
35 Gao Y, De Schutter G, Ye G, et al. Composites Part B: Engineering, 2014, 60, 1.
36 Liu R, Xiao H G, Liu J L, et al. Journal of Materials Science, 2019, 54, 444.
37 Qudoos A, Kim H G, Atta-ur-Rehman, et al. Powder Technology, 2019, 352, 453.
38 Wang G M, Kong Y, Sun T, et al. Construction and Building Materials, 2013, 38, 1129.
39 Josserand L, Coussy O, de Larrard F. Cement and Concrete Research, 2006, 36, 1603.
40 Akçaoǧlu T, Tokyay M, Çelik T. Cement and Concrete Composites, 2004, 26, 633.
41 Ollivier J P, Maso J C, Bourdette B. Advanced Cement Based Materials, 1995, 2, 30.
42 Stroeven P, Stroeven M. Cement and Concrete Composites, 2001, 23, 189.
43 Xuan D X, Shui Z H, Wu S P. Construction and Building Materials, 2009, 23, 2631.
44 Diamond S, Huang J. Cement and Concrete Composites, 2001, 23, 179.
45 Feng H, Li L L, Zhang P, et al. Construction and Building Materials, 2020, 253(30), 119179.
46 Tian Y, Tian Z S, Jin N G, et al. Construction and Building Materials, 2018, 178(30), 432.
47 Carrara P, De Lorenzis L. Cement and Concrete Composites, 2017, 80, 224.
48 Gartner E M, Kurtis K E, Monteiro P J M. Cement and Concrete Research, 2000, 30, 817.
49 Gartner E M. Cement and Concrete Research, 1997, 27, 665.
50 Kong L J, Meng Q C, Du Y B. Advanced Materials Research, 2014, 838-841, 1801.
51 Hussin A, Poole C. Construction and Building Materials, 2011, 25, 2298.
52 Wu F, Liu C W, Sun W, et al. KSCE Journal of Civil Engineering, 2019, 23, 2948.
53 Ke Y, Ortola S, Beaucour A L, et al. Cement and Concrete Research, 2010, 40, 1590.
54 Vargas P, Restrepo-Baena O, Tobón J I. Construction and Building Materials, 2017, 137, 381.
55 Garboczi E J, Bentz D P. Journal of Materials Research, 1991, 6, 196.
56 Thomas J J, Jennings H M. Cement and Concrete Research, 2006, 36, 30.
57 Ghourchian S, Wyrzykowski M, Baquerizo L, et al. Cement and Concrete Composites, 2018, 85, 44.
58 Yim H J, Kim J H, Shah S P. Cement and Concrete Research, 2013, 53, 36.
59 Diamond S. MRS Proceedings, 1986, 85, 21.
60 Bui D D. Rice husk as a mineral admixture for high performance concrete, Ph. D. Thesis, Delft University, Netherlands, 2001.
61 Neubauer C M, Yang M, Jennings H M. Advanced Cement Based Materials, 1998, 8, 17.
62 Wilhelm S, Kind M. Polymers(Basel), 2015, 7, 2504.
63 Wilhelm S, Kind M. Polymers(Basel), 2014, 6, 2896.
64 Lea F M, Desch C H. Cement and Concrete Research, 1971, 1(5), 585.
65 De Rooij M R. Syneresis in cement paste systems. Ph. D. Thesis, Delft University, Netherlands, 2000.
66 De Rooij M R, Bijen J M. Cement and Concrete Research, 1999, 44, 79.
67 Maruyama I, Lura P. Cement and Concrete Research, 2019, 123, 105770.
68 Sahabi H, Kind M. Polymers(Basel), 2011, 3, 1423.
69 Li M T, Liu C X, Yang H Q, et al. Advances in Engineering Research, 2018, 176, 245.
70 Tasong W A, Lynsdale C J, Cripps J C. Cement and Concrete Research, 1998, 28, 1453.
71 Bentz D P, Stutzman P E, Garboczi E J. Cement and Concrete Research, 1992, 22, 891.
72 Wu K, Shi H S, Xu L L, et al. Cement and Concrete Research, 2016, 79, 243.
73 Struble L, Skalny J, Mindess S, et al. Cement and Concrete Research, 1980, 10(2), 277.
74 Hu J, Stroeven P. Interface Science, 2004, 12, 389.
75 Lin J J, Chen H S, Zhang R L, et al. Materials Characterials, 2019, 154, 335.
76 Xu W X, Chen H S. Materials Characterials, 2012, 66, 16.
77 Nežerka V, BílýP, Hrbek V, et al. Cement and Concrete Composites, 2019, 103, 252.
78 Xu G, Shi X M. Resources, Conservation and Recycling, 2018, 136, 95.
79 Golewski G L, Sadowski T. Construction and Building Materials, 2014, 51, 207.
80 Siddique R. Resource, Conservation annd Recycling, 2011, 55, 923.
81 Poon C S, Kou S C, Lam L. Construction and Building Materials, 2006, 20, 858.
82 Güneyisi E, Gesoǧlu M, Karaoǧlu S, et al. Construction and Building Materials, 2012, 34, 120.
83 Siddique R, Klaus J. Applied Clay Science, 2009, 43, 392.
84 Chopra D, Siddique R, Kunal. Biosystems Engineering, 2015, 130, 72.
85 Fapohunda C, Akinbile B, Shittu A. International Journal of Sustainable Built Environment, 2017, 6, 675.
86 Chao-Lung H, Anh-Tuan B L, Chun-Tsun C. Construction and Building Materials, 2011, 25, 3768.
87 Thomas B S. Renewable and Sustainable Energy Reviews, 2018, 82, 3913.
88 Ye Q, Zhang Z N, Kong D Y, et al. Construction and Building Materials, 2007, 21, 539.
89 Barbhuiya S, Mukherjee S, Nikraz H. Construction and Building Materials, 2014, 52, 189.
90 Wang L, Zhang S, Zheng D, et al. Nanomaterials, 2017, 7(12), 429.
91 Zhang R, Cheng X, Hou P, et al. Construction and Building Materials, 2015, 81, 35.
92 Kong D, Lei T, Zheng J, et al. Construction and Building Materials, 2010, 24, 701.
93 Sun D D, Shi H S, Wu K, et al. Construction and Building Materials, 2020, 248(10), 118636.
94 Chaurasia L, Bisht V, Singh L P, et al. Construction and Building Materials, 2019, 195, 340.
95 Long G, Yang J, Xie Y. Construction and Building Materials, 2017, 136, 456.
96 Song B X, Shi C J, Hu X, et al. Construction and Building Materials, 2021, 288, 123113.
97 Shi C J, Tu Z J, Guo M Z, et al. Sustainable and nonconventional construction materials using inorganic bonded fiber composites, Woodhead Publishing, UK, 2017, pp.313.
98 Arribas I, Santamaría A, Ruiz E, et al. Construction and Building Materials, 2015, 90, 68.
99 Juenger M C G, Winnefeld F, Provis J L, et al. Cement and Concrete Research, 2011, 41, 1232.
100 Arvaniti E C, Juenger M C G, Bernal S A, et al. Materials and Structures, 2015, 48, 3675.
101 Golewski G L. Materials Characterization, 2017, 134, 335.
102 Scrivener K L, Lothenbach B, De Belie N, et al. Materials and Structures, 2015, 48, 835.
103 Ramanathan S, Moon H, Croly M, et al. Construction and Building Materials, 2019, 204, 621.
104 Antiohos S, Maganari K, Tsimas S. Cement and Concrete Composites, 2005, 27, 3496.
105 Donatello S, Tyrer M, Cheeseman C R. Cement and Concrete Composites, 2010, 32, 121.
106 Golewski G L. Composite Structures, 2018, 200, 515.
107 Golewski G L. Journal of Hazardous Materials, 2018, 357, 298.
108 Suraneni P, Weiss J. Cement and Concrete Composites, 2017, 83, 273.
109 Heikal M, El-Didamony H, Sokkary T M, et al. Construction and Building Material, 2013, 38, 1180.
110 Golewski G L. Construction and Building Materials, 2019, 197, 849.
111 Jiao D W, Shi C J, Yuan Q. Construction and Building Materials, 2018, 188, 170.
112 Wang X Y, Dong S F, Ashour A, et al. Construction and Building Materials, 2020, 240(20), 117942.
113 Reches Y. Construction and Building Materials, 2018, 175, 483.
114 Zhu X Y, Gao Y, Dai Z W, et al. Cement and Concrete Research, 2018, 107, 49.
115 Gao Y, Zhu X Y, Corr D J, et al. Cement and Concrete Composites, 2019, 99, 130.
116 Paul S C, van Rooyen A S, van Zijl G P A G, et al. Construction and Building Materials, 2018, 189, 1019.
117 Norhasri M S M, Hamidah M S, Fadzil A M. Construction and Building Materials, 2017, 133, 91.
118 Zhou J, Zheng K R, Liu Z Q, et al. Cement and Concrete Research, 2019, 116, 159.
119 Li Z, Wang H, He S, et al. Materials Letters, 2006, 60, 356.
120 Shao Q Y, Zheng K R, Zhou X J, et al. Cement and Concrete Composites, 2019, 98, 39.
121 Li X, Li C, Liu Y, et al. Mechanics of Advanced Materials and Structures, 2018, 25, 1313.
122 Long W J, Wei J J, Ma H, et al. Nanomaterials, 2017, 7(12), 407.
123 Wang J, Han B, Li Z, et al. Journal of Materials in Civil Engineering, 2019, 31(1), 04018352.
124 Mohamed A M. HBRC Journal, 2016, 12, 212.
125 Xu J, Wang B B, Zuo J Q. Cement and Concrete Composites, 2017, 81, 1.
126 Du H J, Du S H, Liu X M. Construction and Building Materials, 2014, 73(30), 705.
127 Roychand R, De Silva S, Setunge S, et al. European Journal of Environmental and Civil Engineering, 2020, 24, 724.
128 Li H, Du T, Xiao H, et al. Journal of the American Ceramic Society, 2017, 100, 3227.
129 Liu J T, Li Q H, Xu S L. Construction and Building Materials, 2015, 101, 892.
130 Wu Z M, Khayat K H, Shi C J. Cement and Concrete Research, 2017, 95, 247.
131 Rezania M, Panahandeh M, Razavi S M J, et al. Theoretical and Applied Fracture Mechanics, 2019, 104, 102391.
132 Du S, Ge Y, Shi X M. Cement and Concrete Composites, 2019, 104, 103390.
133 Li X H, Zhang Q, Mao S. Journal of Hazardous Materials, 2021, 403(5), 123482.
134 Jiao D W, An X P, Shi C J, et al. Journal of Chinese Ceramic Society, 2017, 45(9), 1360(in Chinese).
焦登武, 安晓鹏, 史才军, 等. 硅酸盐学报, 2017, 45(9), 1360(in Chinese).
135 Van Tittelboom K, De Belie N, De Muynck W, et al. Cement and Concrete Research, 2010, 40(1), 157.
136 De Muynck W, De Belie N, Verstraete W. Ecological Engineering, 2010, 36, 118.
137 Matsubara H, Yamada T. Acta Geotechnica, 2020, 15, 29.
138 Siddique R, Jameel A, Singh M, et al. Construction and Building Materials, 2017, 142(1), 92.
139 Frederik H, Willy V. Reviews in Environmental Science and Biotechnology, 2002, 1, 3.
140 Barabesi C, Galizzi A, Mastromei G, et al. Journal of Bacteriology, 2007, 189, 228.
141 De Muynck W, Verbeken K, De Belie N, et al. Ecological Engineering, 2010, 36, 99.
142 Qiu J S, Tng D Q S, Yang E H. Construction and Building Material, 2014, 57(30), 144.
143 Stocks-Fischer S, Galinat J K, Bang S S. Soil Biology Biochemistry, 1999, 31, 1563.
144 De Muynck W, Verbeken K, De Belie N, et al. Applied Microbiology and Biotechnology, 2013, 97, 1335.
145 Zhang Z Q, Zhang B, Yan P Y. Construction and Building Materials, 2016, 121(15), 483.
146 Yan X C, Jiang L H, Guo M Z, et al. Construction and Building Materials, 2019, 195(20), 231.
147 Shi J Y, Liu B J, He Z H, et al. Construction and Building Materials, 2020, 252, 119095.
148 Zou C, Long G C, Xie Y J, et al. Microporous and Mesoporous Materials, 2019, 288, 109566.
149 Soroka I, Jaegermann C H, Bentur A. Matériaux et Construction, 1978, 11, 93.
150 Gallucci E, Zhang X, Scrivener K L. Cement and Concrete Research, 2013, 53, 185.
151 Xie Y J, Wang X, Long G C, et al. Construction and Building Materials, 2019, 206, 504.
152 Zhuang S Y, Wang Q, Zhou Y Q. Construction and Building Materials, 2019, 202, 1.
153 Shao Y, Mirza M S, Wu X. Canadian Journal of Civil Engineering, 2006, 33, 776.
154 Li Y, Fu T H, Wang R J, et al. Construction and Building Materials, 2020, 236, 117543.
155 Zhan H G, Pan G H, Wang Y D. Journal of Southeast University(Natural Science Edition), 2015, 45(3), 569(in Chinese).
占华刚, 潘钢华, 王宇东. 东南大学学报(自然科学版), 2015, 45(3), 569.
156 Lu B, Shi C J, Hou G H. Construction and Building Materials, 2018, 188, 417.
157 Borges P H R, Costa J O, Milestone N B, et al. Cement and Concrete Research, 2010, 40, 284.
158 Elsalamawy M, Mohamed A R, Kamal E M. Alexandria Engineering Journal, 2019, 58, 1257.
159 Chen Y, Liu P, Yu Z. Materials(Basel), 2018, 11, 1.
160 Leemann A, Moro F. Materials and Structures, 2017, 50, 1.
161 Leemann A, Nygaard P, Kaufmann J, et al. Cement and Concrete Composites, 2015, 62, 33.
162 Shi C J, He F Q, Wu Y Z. Construction and Building Materials, 2012, 26, 257.
163 Shi C J, He P P, Tu Z J, et al. Journal of the Chinese Ceramic Society, 2014, 42(8), 996(in Chinese).
史才军, 何平平, 涂贞军, 等. 硅酸盐学报, 2014, 42(8), 996.
164 Pan X Y, Shi C J, Farzadnia N, et al. Cement and Concrete Composites, 2019, 99, 89.
165 He P P, Shi C J, Tu Z J, et al. Cement and Concrete Composites, 2016, 72, 80.
166 Zhan B J, Xuan D X, Poon C S, et al. Cement and Concrete Composites, 2019, 97, 78.
[1] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[2] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[3] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[4] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[5] 董健苗, 邹明璇, 周铭, 余浪, 曹嘉威, 庄佳桥, 王留阳, 王慧敏. 石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响[J]. 材料导报, 2022, 36(24): 21060032-6.
[6] 李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
[7] 王超, 陈琪, 肖述广, 董仕节, 谢志雄, 罗平, 解剑英. 316奥氏体不锈钢高频感应焊接技术及缺陷形成机理[J]. 材料导报, 2022, 36(19): 21020063-5.
[8] 王旭昊, 侯鑫, 甘珑, 汪愿, 边庆华, 张久鹏. 凝灰岩石粉在复合胶凝材料中的火山灰活性及水化性能评估[J]. 材料导报, 2022, 36(16): 22040394-8.
[9] 陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构[J]. 材料导报, 2022, 36(12): 20100140-9.
[10] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[11] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[12] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[13] 石达, 史才军, 吴泽媚, 张祖华, 李凯, 刘翼玮, 侯赛龙. 基于水泥基材料组分的自愈合研究进展[J]. 材料导报, 2021, 35(7): 7096-7106.
[14] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[15] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed