Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23090009-8    https://doi.org/10.11896/cldb.23090009
  无机非金属及其复合材料 |
考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型
金浏, 杨健, 吴洁琼*, 杜修力
北京工业大学城市与工程安全减灾教育部重点实验室,北京 100124
Probabilistic Prediction Model of Fatigue Life of RC Structures Considering the Meso-scale Inhomogeneity of Concrete
JIN Liu, YANG Jian, WU Jieqiong*, DU Xiuli
The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 4248KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作考虑混凝土细观非均质性,将混凝土视为由粗骨料、砂浆基质和界面过渡区组成的三相复合材料,建立了疲劳损伤混凝土中氯离子扩散的三维细观数值分析模型。研究表明,随着疲劳荷载水平、水灰比、温度的升高以及暴露时间的延长,混凝土内氯离子浓度显著增加,但同一深度处氯离子浓度不尽相同。根据K-S检验,在5%显著性水平上,混凝土内某一深度的氯离子浓度遵循混合正态分布。据此提出了结构疲劳寿命预测概率模型,发现结构失效概率随疲劳寿命的延长而增大,且疲劳应力水平、水灰比、温度的降低以及暴露时间的减少均可使结构失效概率降低,结构在服役期间承受的疲劳应力水平不宜超过0.4(失效概率10%和200万次疲劳寿命)。此外,基于上述模型,对我国四个沿海城市混凝土结构的疲劳寿命进行了预测,并提出了相应的耐久性建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金浏
杨健
吴洁琼
杜修力
关键词:  钢筋混凝土梁  数值模拟  混凝土非均质性  概率密度  疲劳寿命    
Abstract: A 3D microscopic numerical model for chloride diffusion in fatigue-damaged concrete was established, where the concrete was treated as a three-phase composite consisting of coarse aggregate, mortar matrix and ITZ to consider its inhomogeneity. Results showed that the chloride concentration in concrete increases significantly with the increase of fatigue stress level, water-cement ratio, temperature and exposure time, in which the chloride concentration at the same depth is different. According to the K-S test, the chloride concentration at a certain concrete depth follows the mixed normal distribution at a 5% significance level, based on which, a probabilistic fatigue life prediction model is proposed. It was found that the failure probability increases with the increase of fatigue life, but decreases with the decrease of fatigue stress level, water-cement ratio, temperature and exposure time. Hence it was suggested that RC structure should be maintained a fatigue stress level of below 0.4 (failure probability of 10% and 2 million cycles of fatigue life) during its service. In addition, based on the proposed model, the fatigue life of RC structures in four coastal cities was predicted and the related durability recommendations were given.
Key words:  RC beam    numerical simulation    concrete inhomogeneity    probability density    fatigue life
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TU375.1  
基金资助: 国家自然科学基金(52108106);北京市杰出青年科学基金(JQ22025)
通讯作者:  * 吴洁琼,北京工业大学校聘教授、博士研究生导师。2014—2020年于北京航空航天大学硕博连读,获博士学位。目前主要从事混凝土结构疲劳和耐久性等方面的研究工作。主持国家和省部级课题3项,发表学术论文30余篇,以第一或通信作者发表SCI论文17篇、EI论文4篇。jieqiong.wu@bjut.edu.cn   
作者简介:  金浏,北京工业大学教授、博士研究生导师,国家优青、北京市杰青,国家自然科学基金创新研究群体骨干,兼任中国地震学会基础设施防震减灾青年委员会主任委员等。主要研究方向包括混凝土材料与构件尺寸效应、混凝土结构多灾害效应。主持国家重点研发计划等国家级项目6项;出版中、英文学术著作2部、教材2部;发表学术论文300余篇,以第一或通信作者发表SCI论文145篇、EI论文120篇;获国家专利、软件著作权授权12项;参编国家标准1项;获省部级及学会一等奖2项、二等奖2项;获Elsevier中国高被引学者、斯坦福全球前2%科学家荣誉称号。
引用本文:    
金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
JIN Liu, YANG Jian, WU Jieqiong, DU Xiuli. Probabilistic Prediction Model of Fatigue Life of RC Structures Considering the Meso-scale Inhomogeneity of Concrete. Materials Reports, 2024, 38(20): 23090009-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090009  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23090009
1 Ai Z Y, Sun W, Jiang J Y, et al. Materials Reports, 2016, 30(15), 92 (in Chinese).
艾志勇, 孙伟, 蒋金洋, 等. 材料导报, 2016, 30(15), 92.
2 Fu Z, Ji B, Ye Z, et al. KSCE Journal of Civil Engineering, 2017, 21, 1400.
3 Wang D, Liu Z J, Zheng X N, et al. Journal of Building Structures, 2015 (S2), 250 (in Chinese).
王丹, 刘子键, 郑晓宁, 等. 建筑结构学报, 2015 (S2), 250.
4 Wu J Q, Xu J C, Diao B, et al. Journal of Building Structures, 2022, 43(9), 201 (in Chinese).
吴洁琼, 许见超, 刁波, 等. 建筑结构学报, 2022, 43(9), 201.
5 FuU C, Ye H, Jin X, et al. Construction and Building Materials, 2016, 125, 714.
6 Liu Z J, Zheng X N, Diao B, et al. Journal of Building Structures, 2014, 35(3), 171 (in Chinese).
刘子键, 郑晓宁, 刁波. 建筑结构学报, 2014, 35(3), 171.
7 Wu J, Diao B, Cao Y, et al. Construction and Building Materials, 2020, 234, 117396.
8 Jin L, Yu H, Wang Z, et al. Case Studies in Construction Materials, 2022, 17, e01168.
9 Isteita M, Xi Y. Construction and Building Materials, 2017, 156, 73.
10 Li W, Guo L. Ocean Engineering, 2021, 239, 109770.
11 Zheng B, Li T, Qi H, et al. Construction and Building Materials, 2022, 326, 126632.
12 Gao Y, Zhang J, Zhang S, et al. Construction and Building Materials, 2017, 140, 485.
13 Wu R, Xia J, Cheng X, et al. Construction and Building Materials, 2022, 322, 126378.
14 Wu J, Diao B, Xu J, et al. International Journal of Fatigue, 2020, 131, 105299.
15 Wu J, Xu J, Diao B, et al. Journal of Materials in Civil Engineering, 2020, 32(6), 04020107.
16 Wu J, Xu J, Diao B, et al. Construction and Building Materials, 2021, 266, 120999.
17 Li C, Wu M, Chen Q, et al. Cement and Concrete Composites, 2018, 86, 139.
18 Du X, Jin L, Ma G. Finite Elements in Analysis and Design, 2014, 85, 87.
19 Wu J, Yang J, Zhang R, et al. International Journal of Fatigue, 2022, 158, 106751.
20 Liu J, Tang K, Pan D, et al. Materials, 2014, 7(9), 6620.
21 Boddy A, Bentz E, Thomas M D A, et al. Cement and Concrete Research, 1999, 29(6), 827.
22 Page C L, Short N R, EL Tarras A. Cement and Concrete Research, 1981, 11(3), 395.
23 Bourdette B, Ringot E, Ollivier J P. Cement and Concrete Research, 1995, 25(4), 741.
24 Guo Z, Guo R, Yao G. Case Studies in Construction Materials, 2022, 17, e01305.
25 Sun G, Sun W, Zhang Y, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2012, 27, 364.
26 Jiang H Y, Tian Y, Jin N G, et al. Construction and Building Materials, 2020, 259, 119694.
27 Chen X D, Rong H, Liang M M, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(11), 3593 (in Chinese).
陈宣东, 荣华, 梁秒梦, 等. 硅酸盐通报, 2021, 40(11), 3593.
28 CEB-FIP. Fib model code for concrete structures 2010, Ernst & Sohn, Germany, 2010.
29 MOHURD. GB/T 50476-2019, Standard for design of concrete structure durability, China Architecture & Building Press, China, 2019 (in Chinese).
中华人民共和国住房和城乡建设部. GB/T 50476-2019, 混凝土结构耐久性设计标准, 中国建筑工业出版社, 2019.
30 Xu L Z, Bo Q J, Xu C Y, et al. Tianjin Science and Technology, 2018, 45(9), 5 (in Chinese).
徐灵芝, 卜清军, 许长义, 等. 天津科技, 2018, 45(9), 5.
31 Yang H M, Jiang F, Qi X, et al. Meteorological and Environmental Sciences, 2012, 35(1), 83 (in Chinese).
杨红梅, 姜锋, 祁欣, 等. 气象与环境科学, 2012, 35(1), 83.
32 Xu X M, Gu A J, Gu P Q, et al. Shanghai Agricultural Science and Technology, 2022(4), 16 (in Chinese).
徐相明, 顾艾节, 顾品强, 等. 上海农业科技, 2022(4), 16.
33 Fang W J, Li W W, Cao W Z. Industrial Construction, 2020, 50(6), 117 (in Chinese).
方五军, 李伟文, 曹文昭. 工业建筑, 2020, 50(6), 117.
34 Cheng C G, Han Y B, Yuan Y, et al. Construction Quality, 2018, 36(9), 5 (in Chinese).
程长广, 韩彦斌, 袁悦, 等. 工程质量, 2018, 36(9), 5.
35 BOQTS. Technical specification for durability of concrete for water conservancy projects, Jiangsu People’s Press, 2013 (in Chinese).
江苏省质量技术监督局. 水利工程混凝土耐久性技术规范, 江苏人民出版社, 2013.
36 Bi G P. In: Proceedings of the Nineteenth National Bridge Academic Conference (Second booklet). Shanghai, 2010, pp.1146 (in Chinese).
毕桂平. 第十九届全国桥梁学术会议论文集(下册). 上海, 2010, pp.1146.
37 Luo D M. Environmental zoning study on durability of concrete structures in Shenzhen. Master’s Thesis, Xi’an University of Architecture and Technology, 2011 (in Chinese).
罗大明. 深圳市混凝土结构耐久性环境区划研究. 硕士学位论文, 西安建筑科技大学, 2011.
[1] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[2] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[3] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[4] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[5] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[6] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[7] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[8] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[9] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[10] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[11] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[12] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[13] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[14] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[15] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed