Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22080233-9    https://doi.org/10.11896/cldb.22080233
  金属与金属基复合材料 |
火花放电法制备纳米材料及其应用综述
张昱, 梁沛林, 何钧宇, 杨冠南*, 崔成强*
广东工业大学省部共建精密电子制造技术与装备国家重点实验室,广州 511400
Review on Preparation of Nanomaterials by Spark Discharge Method and Its Application
ZHANG Yu, LIANG Peilin, HE Junyu, YANG Guannan*, CUI Chengqiang*
State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 511400, China
下载:  全 文 ( PDF ) ( 23649KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米材料在光学、热学、电学、磁学、力学等方面表现出优异的特性,已广泛应用于储氢、催化、太阳能电池、微电子封装、生物医疗等领域。火花放电法是一种制备纳米粒子的有效手段,具有普适性广、纯度高、操作过程简单、方法灵活、对环境友好等特点。本文概述了火花放电发生器的基本组成部分、火花放电过程的原理,对纳米粒子的形成机制以及影响纳米粒子尺寸和产率的关键因素进行详细分析,列举了制备的纳米材料种类的多样性,并综述了该技术制备的纳米材料在诸多领域展现出的优异性能,最后对火花放电制备纳米材料及其应用领域的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昱
梁沛林
何钧宇
杨冠南
崔成强
关键词:  纳米材料  火花放电  粒子形成机制    
Abstract: Nanomaterials exhibit excellent properties in optical, thermal, electrical, magnetic and mechanical properties. It has been widely used in hydrogen storage, catalysis, solar cells, microelectronic packaging, biomedical and other fields. Spark discharge method is an effective means to prepare nanoparticles with wide applicability, high purity, simple operation process, flexible method, and friendly to the environment. This paper outlines the basic components of the spark discharge generator and the principles of the spark discharge process, analyzes in detail the formation mechanism of nanoparticles as well as the key factors affecting the size and production of nanoparticles. In addition, it lists the diversity of prepared nanomaterials, and reviews the excellent properties of nanomaterials prepared by this technique in many fields. Finally, we make an outlook on the development of nanomaterials prepared by spark discharge and their application areas.
Key words:  nanomaterials    spark discharge    the formation mechanism of particle
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TB31  
  TB331  
  TB34  
  O539  
基金资助: 国家自然科学基金(62174039);国家重点研发计划(2018YFE0204601)
通讯作者:  杨冠南,广东工业大学省部共建精密电子制造技术与装备国家重点实验室成员,博士毕业于清华大学材料学院。从事微纳金属互连材料、先进微电子封装、金属激光加工等领域的相关工作。目前已在相关领域著名国际期刊和国际会议上发表SCI论文44篇(一作/通信32篇),EI论文16篇(通信5篇),拥有中国授权专利20件(第一发明人11件)。另外,拥有美国授权专利1件和PCT专利7件。ygn@gdut.edu.cn
崔成强,广东工业大学省部共建精密电子制造技术与装备国家重点实验室成员,二级教授、博士研究生导师、海外高层次人才。曾获得中国专利优秀奖,李光耀顶尖研究奖。研究方向为半导体先进封装工艺、高端封装基板、半导体互连材料。申请国内外发明专利超过200余项,累计授权专利120余项,发表高水平论文140余篇。cqcui@gdut.edu.cn   
作者简介:  张昱,广东工业大学省部共建精密电子制造技术与装备国家重点实验室成员,副教授、硕士研究生导师。2016年1月于中国科学院大学获得理学博士学位,毕业后到广东工业大学工作至今。目前主要从事微纳金属材料、电子封装材料与工艺等方面的研究工作,已授权中国发明专利50余件,发表SCI论文20余篇,包括ACS Applied Materials & Interfaces、Nanoscale、Journal of Materials Chemistry A、Ultrasonics Sonochemistry 、Journal of Alloys and Compounds、Biomaterials Science、Nanotechnology等。
引用本文:    
张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
ZHANG Yu, LIANG Peilin, HE Junyu, YANG Guannan, CUI Chengqiang. Review on Preparation of Nanomaterials by Spark Discharge Method and Its Application. Materials Reports, 2024, 38(7): 22080233-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080233  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22080233
1 Zhang H. ACS Nano, 2015, 9(10), 9451.
2 Martin C R. Science, 1994, 266(5193), 1961.
3 Kelly K L, Coronado E, Zhao L L, et al. Journal of Physical Chemistry B, 2003, 107(3), 668.
4 Anastasopol A, Pfeiffer T V, Middelkoop J, et al. Journal of the American Chemical Society, 2013, 135(21), 7891.
5 Nafiu S A, Shah S S, Aziz A. Chemistry—An Asian Journal, 2021, 16(14), 1956.
6 Shaky M M, Chowdhury M H. Applied Optics, 2021, 60(17), 5094.
7 Wang S, Li M Y, Ji H J, et al. Scripta Materialia, 2013, 69(11), 789.
8 Naskar A, Kim K S. Pharmaceutics, 2021, 13(1), 86.
9 Li J, Shi T, Feng C, et al. Materials Letters, 2017, 216, 20.
10 Chia-Chang L, Jun-Hong L, Kuan-Yi W. Ceramics International, 2023, 49(2), 1874.
11 Li S M, Liu H, Yu S S, et al. China Powder Science and Technology, 2013, 19(6), 49 (in Chinese).
李双明, 刘慧, 于三三, 等. 中国粉体技术, 2013, 19(6), 49.
12 Alireza S, Farid M. Polymer Composites, 2022, 43(3), 1282.
13 Xie Z Y, Xu J S. Lubrication Engineering, 2006(3), 126 (in Chinese).
谢中亚, 徐建生. 润滑与密封, 2006(3), 126.
14 Chen X, Zhang Z Z, Zhao F X, et al. Foundry Technology, 2011, 32(4), 527 (in Chinese).
陈西, 张振忠, 赵芳霞. 铸造技术, 2011, 32(4), 527.
15 Pfeiffer T V, Feng J, Schmidt-Ott A. Advanced Powder Technology, 2014, 25(1), 56.
16 Vasiliev A A, Varfolomeev A E, Volkov I A, et al. Sensors (Basel, Switzerland), 2019, 18(8), 2600.
17 Vons V A, Leegwater H, Legerstee W J, et al. International Journal of Hydrogen Energy, 2010, 35(11), 5479.
18 Lu J, Guo J, Song S, et al. RSC Advances, 2020, 10(63), 38583.
19 Kourmouli A, Valenti M, Rign E,et al. Journal of Nanoparticle Research, 2018, 20(3), 62.
20 Meuller B O, Messing M E, Engberg D L J, et al. Aerosol Science and Technology, 2012, 46(11), 1256.
21 Schwyn S, Garwin E, Schmidt-Ott A. Journal of Aerosol Science, 1988, 19(5), 639.
22 Peineke C, Davoodi P, Seipenbusch M. Journal of Nanoscience & Nanotechnology, 2011, 11(10), 8628.
23 Isaac N, Valenti M, Schmidt-Ott A, et al. ACS Applied Materials & Interfaces, 2016, 8(6), 3933.
24 Ha K, Jang E, Jang S, et al. Nanotechnology, 2016, 27(5), 055403.
25 Vons V A. Spark discharge generated nanoparticles for hydrogen storage applications. Ph. D. Thesis, Delft University of Technology, Netherland, 2010.
26 Petr R A, Burkes T R. Applied Physics Letters, 1980, 36(7), 536.
27 Reinmann R, Akram M. Journal of Applied Physics, 1997, 30(7), 1125.
28 Naidu M S, Kamaraju V. IEEE Power Engineering Review, 1995, 15, 36.
29 Walters J P, Malmstadt H V. Analytical Chemistry, 1965, 37(12), 1484.
30 Raizer Y P. In: Gas discharge physics, Springer Berlin Press, Russian, 1991, pp. 140.
31 Palomares J M, Kohut A, Galbács G, et al. Journal of Applied Physics, 2015, 118(23), 56.
32 Persephonis P, Vlachos K, Georgiades C, et al. Journal of Applied Phy-sics, 1992, 71(10), 4755.
33 Harrison M A. Physical Review, 1957, 105(2), 366.
34 Tabrizi N S, Ullmann M, Vons V A, et al. Journal of Nanoparticle Research, 2008, 11(2), 315.
35 Lethtinen K E J, Zachariah M R. Journal of Aerosol Science, 2002, 33(2), 357.
36 Andreas S O. Spark ablation-building blocks for nanotechnology, Jenny Stanford Publishing, Singapore, 2020, pp. 56.
37 Byeon J H, Park J H, Hwang J. Journal of Aerosol Science, 2008, 39(10), 888.
38 Tabrizi N S, Xu Q, van der Pers N M. Journal of Nanoparticle Research, 2009, 11(5), 1209.
39 Lafont U, Simonin L, Tabrizi N S, et al. Journal of Nanoscience & Nanotechnology, 2009, 9(4), 2546.
40 Tabrizi N S, Xu Q, van der Pers N M. Journal of Nanoparticle Research, 2010, 12(1), 247.
41 Evans D E, Harrison R M, Ayres J G. Aerosol Science & Technology, 2003, 37(12), 975.
42 Feng J, Geutjens R, Thang N, et al. ACS Applied Materials & Interfaces, 2018, 10(7), 6073.
43 Vons V A, Anastasopol A, Legerstee W J, et al. Acta Materialia, 2011, 59(8), 3070.
44 Anastasopol A, Pfeiffer T V, Schmidt-Ott A, et al. Applied Physics Letters, 2011, 99(19), 217.
45 Pfeiffer T, Kedia P, Messing M, et al. Materials, 2015, 8(3), 1027.
46 Gulijk C V, Bal E, Schmidt-Ott A. Journal of Aerosol Science, 2009, 40(4), 362.
47 Abd El-Aal M, Seto T. Surface and Interface Analysis, 2021, 53(9), 824.
48 Winai T, Tewasin K, Ekkapong K, et al. Materials Letters, 2021, 311, 131591.
49 Vincent A, Lcpmd S, David M, et al. Journal of Nanoparticle Research, 2011, 13(10), 4867.
50 Ning D, Jing X, Yaxuan Y, et al. Journal of Power Sources, 2009, 192(2), 644.
51 Janot R, Cuevas F, Latroche M, et al. Intermetallics, 2006, 14(2), 163.
52 Sarmishtha G, Debasis M, Sudip R, et al. Sensors & Transducers Journal, 2010, 113(2), 1.
53 Shiyang L, Xiangfeng H, Zhengyu W, et al. Chemical Engineering Journal, 2020, 388, 124373.
54 Jicheng F, Esther H, Maria B, et al. ACS Applied Materials & Interfaces, 2016, 8(23), 14756.
55 Braams F P. A clean and flexible catalyst synthesis method: metal nano-particles on a fractal-like nanostructured metal oxide support. Ph. D. Thesis, Delft University of Technology, Netherland, 2015.
56 Isaac N, Valenti M, Schmidt-Ott A, et al. ACS Applied Materials & Interfaces, 2016, 8(6), 3933.
57 Isaac N A, Ngene P, Westerwaal R J, et al. Sensors & Actuators B Chemical, 2015, 221(DEC. ), 290.
58 Aae A, Gnp B, Avn B, et al. Results in Physics, 2017, 7, 440.
59 Efimov A A, Arsenov P V, Protas N V, et al. In: International Confe-rence on Mechanical Engineering and Applied Composite Materials, Hong Kong, China, 2018, pp. 012082.
60 Alexey A E, Denis V K, Arseny I B, et al. Applied Sciences, 2021, 11(13), 5791.
61 Methling R P, Senz V, Klinkenberg E D, et al. European Physical Journal D, 2001, 16(1), 173.
62 Zonnevylle A C, Hagen C W, Kruit P, et al. Microelectronic Enginee-ring, 2009, 86(4), 803.
[1] 成翊榕, 李万万. 基于光热纳米材料的热信号侧向层析技术研究进展[J]. 材料导报, 2024, 38(8): 22110152-6.
[2] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[3] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[4] 张聪, 梁柄权, 王晓峰, 陈新亮, 侯国付, 赵颖, 张晓丹. 透明导电材料研究进展[J]. 材料导报, 2024, 38(6): 23040045-13.
[5] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[6] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[7] 伍红雨, 肖海, 曾向东, 赵晓昱. 导电水凝胶材料研究进展及在超级电容器的应用[J]. 材料导报, 2024, 38(19): 23060125-8.
[8] 付华, 陈慧媛, 宋维君, 赵云. 一种新型的用于萃取铷的冠醚功能化磁性固相纳米材料[J]. 材料导报, 2024, 38(17): 22070038-6.
[9] 龙娟, 李宇展, 李志强, 钟土华. 纳米纤维素的点击反应改性及应用研究进展[J]. 材料导报, 2024, 38(17): 23050159-10.
[10] 潘二才, 姜志超, 黄嘉辉, 马玉荣. 通过仿生矿化修复人体牙齿结构[J]. 材料导报, 2024, 38(15): 23030040-13.
[11] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[12] 戴瑛凡, 杨瑞昊, 吕权杰, 李晗寅, 陶可. 无机纳米材料用于声动力治疗的研究进展[J]. 材料导报, 2024, 38(1): 22110085-6.
[13] 魏亚洲, 刘一凡, 李翔龙. 电火花放电法合成Cu0.81Ni0.19合金的性能研究[J]. 材料导报, 2023, 37(9): 21080057-6.
[14] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[15] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed