Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1806-1812    https://doi.org/10.11896/j.issn.1005-023X.2018.11.006
  材料综述 |
超材料宽带圆偏振器的研究进展
康园园,汤登飞,王川,董建峰
宁波大学信息科学与工程学院,宁波 315211
Research Progress of Broadband Circular Polarizers Based on Metamaterials
KANG Yuanyuan, TANG Dengfei, WANG Chuan, DONG Jianfeng
College of Information Science and Engineering, Ningbo University, Ningbo 315211
下载:  全 文 ( PDF ) ( 3013KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超材料因其独特的性质可以作为选择圆偏振光的器件,即圆偏振器。随着偏振分辨成像系统的重要性日益增强,圆偏振器已被用于增强对比度、圆偏振显微镜以及生物分子的检测,如氨基酸、DNA和具有固有手性结构的葡萄糖,尤其是在可见光波长下工作的圆偏振器已经引起了人们广泛的关注,已被用作控制复杂显示系统中光的偏振态的关键光学元件。然而通过传统方法获取圆偏振器有很大的局限性,如体积庞大、工作带宽窄等,极大地限制了它们的发展。近几年来,超材料中螺旋结构和堆叠结构的提出,促进了宽带圆偏振器的发展。本文简述了超材料中螺旋结构和堆叠结构形成宽带圆偏振器的偏振原理,详述了两种结构作为宽带圆偏振器的数值模拟和实验研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康园园
汤登飞
王川
董建峰
关键词:  超材料  螺旋结构  堆叠结构  圆偏振器    
Abstract: The metamaterial can be used as a device for selecting circularly polarized light because of its unique properties, namely circular polarizer. With the increasing importance of polarization resolved imaging system, circular polarizers have been applied to enhanced contrast, circular polarization microscopy and detection of biomolecules such as amino acid, DNA and glucose which have inherent chiral structures. Especially, circular polarizers operating at visible wavelength have attracted much attention because they are exploited as crucial optical components to control the polarization state of light in the complex display systems. However, the traditional circular polarizer for obtaining circularly polarized light has great limitations, such as bulky configuration, narrow working bandwidth and so on, which greatly limits their development to some extent. Recently,the development of broadband circular polarizers has been promoted with the proposed helical structures and stack structures in metamaterials.The polarization principles of two such kinds of wideband wideband structures are introduced. The numerical simulation and experimental research progress of two such kinds of wideband structures as circular polarizers are reviewed in detail.
Key words:  metamaterials    helical structure    stack structure    circular polarizer
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TB34  
基金资助: 国家自然科学基金(61475079)
作者简介:  康园园:男,1992年生,硕士研究生,研究方向为超材料圆偏振器 E-mail:1431585676@qq.com 董建峰:通信作者,男,1964年生,博士,教授,博士研究生导师,从事超材料、手征介质波导等方面的研究 E-mail:dongjianfeng@nbu.edu.cn
引用本文:    
康园园,汤登飞,王川,董建峰. 超材料宽带圆偏振器的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1806-1812.
KANG Yuanyuan, TANG Dengfei, WANG Chuan, DONG Jianfeng. Research Progress of Broadband Circular Polarizers Based on Metamaterials. Materials Reports, 2018, 32(11): 1806-1812.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.006  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1806
1 Uchida T, Ishinabe T. Reflective liquid-crystal displays[J].MRS Bulletin,2002,27(11):876.
2 Xu M, Xu F, Yang D K. Effects of cell structure on the reflection of cholesteric liquid crystal displays[J].Journal of Applied Physics,1998,83(4):1938.
3 Yang D K, West J L, Chien L C, et al. Control of reflectivity and bistability in displays using cholesteric liquid crystals[J].Journal of Applied Physics,1994,76(2):1331.
4 Yoon T H, Lee G D, Kim J C. Nontwist quarter-wave liquid-crystal cell for a high-contrast reflective display[J].Optics Letters,2000,25(20):1547.
5 Hikmet R, Kemperman H. Electrically switchable mirrors and optical components made from liquid-crystal gels[J].Nature,1998,392(6675):476.
6 Mitov M, Dessaud N. Going beyond the reflectance limit of cholesteric liquid crystals[J].Nature Materials,2006,5(5):361.
7 Xiao J M, Cao H, He W L, et al. Wide-band reflective polarizers from cholesteric liquid crystals with stable optical properties[J].Journal of Applied Polymer Science,2007,105(5):2973.
8 Ha N Y, Ohtsuka Y, Jeong S M, et al. Fabrication of a simulta-neous red-green-blue reflector using single-pitched cholesteric liquid crystals[J].Nature Materials,2008,7(1):43.
9 Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J].Science,2009,325(5947):1513.
10 Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J].Nature Communications,2012,3(3):870.
11 章文勋.天线(上册)[M].北京:电子工业出版社,2011:174.
12 韦丹.固体物理[M].北京:清华大学出版社,2003:242.
13 Li Z F, Caglayan H, Colak E, et al. Coupling effect between two adjacent chiral structure layers[J].Optics Express,2010,18(6):5375.
14 Gansel J K, Wegener M, Burger S, et al. Gold helix photonic metamaterials: A numerical parameter study[J].Optics Express,2010,18(2):1059.
15 Yang Z Y, Zhao M, Lu P X. A numerical study on helix nanowire metamaterials as optical circular polari-zers in the visible region[J].IEEE Photonics Technology Letters,2010,22(17):1303.
16 Yu Y, Yang Z Y, Zhao M, et al. Broadband optical circular polari-zers in the terahertz region using helical metamaterials[J].Journal of Optics,2011,13(5):994.
17 Kuzyk A, Schreiber R, Fan Z Y, et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response[J].Nature,2011,483(7389):311.
18 Wu L, Yang Z Y, Zhao M, et al. What makes single-helical metamaterials generate “pure” circularly polarized light?[J].Optics Express,2012,20(2):1552.
19 Zhang P, Yang Z Y, Zhao M, et al. Similar structures, different characteristics: Circular dichroism of metallic helix arrays with single-, double-, and triple-helical structures[J].Journal of the Optical Society of America A,2013,30(4):677.
20 Esposito M, Tasco V, Todisco F, et al. Chirality: Three dimensio-nal chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition[J].Advanced Optical Materials,2014,2(2):198.
21 Yang Z Y, Zhao M, Lu P X, et al. Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures[J].Optics Letters,2010,35(15):2588.
22 Yang Z Y, Zhao M, Lu P X. How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials?[J].Optics Express,2011,19(5):4255.
23 Yu Y, Yang Z Y, Li S X, et al. Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials[J].Optics Express,2011,19(11):10886.
24 Wu L, Zhao M, Xie P Y, et al. Reflection properties of metallic helical metamaterials[J].Journal of Lightwave Technology,2012,30(18):3050.
25 Kaschke J, Gansel J K, Wegener M. On metamaterial circular po-larizers based on metal N-helices[J].Optics Express,2012,20(23):26012.
26 Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit[J].Laser & Photonics Reviews,2013,7(1):22.
27 Esposito M, Tasco V, Todisco F, et al. Triple-helical nanowires by tomographic rotatory growth for chiral photonics[J].Nature Communications,2015,6:6484.
28 Kaschke J, Wegener M. Gold triple-helix mid-infrared metamaterial by STED-inspired laser lithography[J].Optics Letters,2015,40(17):3986.
29 Gansel J K, Latzel M, Frolich A, et al. Tapered gold-helix metamaterials as improved circular polarizers[J].Applied Physics Letters,2012,100(10):101109.
30 Zhao Z, Gao D S, Bao C J, et al. High extinction ratio circular po-larizer with conical double-helical metamaterials[J].Journal of Lightwave Technology,2012,30(15):2442.
31 Kaschke J, Blome M, Burger S, et al. Tapered N-helical metama-terials with three-fold rotational symmetry as improved circular polarizers[J].Optics Express,2014,22(17):19936.
32 Huang Y H, Zhou Y, Wu S T. Broadband circular polarizer using stacked chiral polymer films[J].Optics Express,2007,15(10):6414.
33 Liu N, Guo H C, Fu L W, et al. Three-dimensional photonic metamaterials at optical frequencies[J].Nature Materials,2008,7(1):31.
34 Holloway C L, Kuester E F, Gordon J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equi-valents of metamaterials[J].IEEE Antennas & Propagation Magazine,2012,54(2):10.
35 Van Orden D, Fainman Y, Lomakin V. Twisted chains of resonant particles: Optical polarization control, waveguidance, and radiation[J].Optics Letters,2010,35(15):2579.
36 Alù A, Engheta N. Optical nanotransmission lines: Synthesis of planar left-handed metamaterials in the infrared and visible regimes[J].Journal of the Optical Society of America B,2006,23(3):571.
37 Zhao Y, Shi J W, Sun L Y, et al. Alignment-free three-dimensional optical metamaterials[J].Advanced Materials,2014,26(9):1439.
38 Wang J, Shen Z X, Wu W, et al. Wideband circular polarizer based on dielectric gratings with periodic parallel strips[J].Optics Express,2015,23(10):12533.
39 Zhang W, Li J Y, Wang L. Broadband circular polarizer based on multilayer gradual frequency selective surfaces[J].International Journal of Antennas and Propagation,2016,2016:1.
40 Ji R N, Wang S W, Liu X X, et al. Broadband circular polarizers constructed using helix-like chiral metamaterials[J].Nanoscale,2016,8(31):14725.41 Ma X L, Huang C, Pu M B, et al. Multi-band circular polarizer using planar spiral metamaterial structure[J].Optics Express,2012,20(14):16050.
42 Cui Y H, Kang L, Lan S F, et al. Giant chiral optical response from a twisted-arc metamaterial[J].Nano Letters,2014,14(2):1021.
43 Jiang H, Zhao W Y, Jiang Y. All-dielectric circular polarizer with nearly unit transmission efficiency based on cascaded tensor Huygens surface[J].Optics Express,2016,24(16):17738.
44 Yun J G, Kim S J, Yun H S, et al. Broadband ultrathin circular polarizer at visible and near-infrared wavelengths using a non-resonant characteristic in helically stacked nano-gratings[J].Optics Express,2017,25(13):14260.
[1] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[2] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[3] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[4] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[5] 高海涛, 王建江, 侯永申, 李泽. 影响电阻膜型超材料吸波体吸收特性的材料参数[J]. 材料导报, 2018, 32(24): 4230-4234.
[6] 冯团辉, 李优. 基于单负超材料的高品质因数亚波长谐振腔[J]. 《材料导报》期刊社, 2018, 32(14): 2366-2369.
[7] 汤登飞,汪会波,王川,周霞,董建峰. 超材料对电磁波的极化转换及不对称传输研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 101-107.
[8] 高海涛, 王建江, 许宝才, 李泽, 刘嘉玮. “三明治”型超材料吸波体及其设计优化的研究现状*[J]. 《材料导报》期刊社, 2017, 31(3): 15-20.
[9] 宋健, 李敏华, 董建峰. 基于集总元件的超材料吸波器研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 114-122.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed