Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3814-3822    https://doi.org/10.11896/j.issn.1005-023X.2018.21.019
  金属与金属基复合材料 |
搅拌摩擦加工制备颗粒增强铝基复合材料的研究现状及展望
席小鹏1, 2, 王快社1, 2, 王文1, 2, 彭湃1, 2, 乔柯1, 2, 余良良1, 2
1 西安建筑科技大学冶金工程学院,西安 710055;
2 西安建筑科技大学功能材料加工国家地方联合工程研究中心,西安 710055
Research Status and Prospect of Manufacturing Particles Reinforced Aluminum Matrix Composites by Friction Stir Processing
XI Xiaopeng1, 2, WANG Kuaishe1, 2, WANG Wen1, 2, PENG Pai1, 2, QIAO Ke1, 2, YU Liangliang1, 2
1 School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055;
2 State Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an 710055
下载:  全 文 ( PDF ) ( 1960KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铝合金作为现代工程和高新技术领域发展的关键材料之一,具有密度小、比强度和比刚度高、耐蚀性好等特点。通过在铝基体中添加增强相颗粒,制备得到的颗粒增强铝基复合材料既有铝合金良好的强度、韧性、易成形性等特点,又有颗粒的高强、高模等优点,是近年来应用最广的一类金属基复合材料。
目前,制备铝基复合材料的方法主要有粉末冶金法、铸造以及超声波法等,但这些方法在制备过程中需要较高的温度,颗粒与金属基体容易发生不良的界面反应,从而影响界面结合效果,降低复合材料的性能。搅拌摩擦加工(FSP)作为一种新型的固相加工技术,可同时实现材料微观组织的细化、致密化和均匀化。目前,FSP直接法已在铝基复合材料制备方面取得应用,主要是将增强相颗粒通过打盲孔或开槽的方式预置在金属基体内再进行FSP,进而制备出高致密度的颗粒增强铝基复合材料。因为FSP过程的温度低,颗粒与铝基体不会发生界面反应,所以该方法也被用于制备具有形状记忆效应(SME)的铝基功能复合材料。
近年研究结果表明,颗粒相对FSP制备的铝基复合材料晶粒细化起到显著作用,这有助于提高复合材料的拉伸强度、显微硬度及疲劳强度等力学性能。随着颗粒含量的增加和颗粒尺寸的减小,复合材料的力学性能得以增强。再者,减小颗粒尺寸有利于改善颗粒与基体之间的结合。另外,通过优化搅拌头的结构、形状和尺寸,以及FSP工艺参数,已经可以实现加工后颗粒相在基体中的均匀分布。
鉴于搅拌摩擦加工(FSP)直接法在制备颗粒增强铝基复合材料方面所具备的短流程、高效能以及基体与增强相颗粒界面无杂质等优势,本文对目前FSP直接法制备颗粒增强铝基复合材料的最新研究现状进行了总结。主要综述了FSP制备颗粒增强铝基复合材料过程中颗粒的含量、类型及尺寸对复合材料组织与力学性能的影响,并对颗粒分布均匀性以及颗粒与铝基体的界面问题做了阐述。文章最后深入分析了当前研究中的不足之处并展望了未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
席小鹏
王快社
王文
彭湃
乔柯
余良良
关键词:  搅拌摩擦加工  颗粒  铝基复合材料  均匀性  界面  增强相    
Abstract: As one of the key materials for the development of modern engineering and high-tech fields, aluminum alloys are distinguished by the satisfactory characteristics such as low density, high specific strength, high specific stiffness and good corrosion resistance. By adding reinforcement particles to the aluminum matrix, we can obtain the composites which incorporate both the strength, toughness, formability of aluminum alloy, and high strength, high elastic modulus of reinforcement particles, and thus have in recent years imparted enormous application potential to these aluminum matrix composites.
Currently, the prevailing methods for preparing aluminum matrix composites are powder metallurgy, casting and ultrasonication, etc. However, due to the high temperature during materials processing by those common methods, reinforcement particles and aluminum matrix are prone to react at the interface of the two phases. This will, in consequence, attenuate the interface bonding and cause properties deterioration. Friction stir processing (FSP), a new type of solid phase processing technology, can achieve synchronously microstructures refinement, densification and homogenization. At present, the FSP direct method has found application to the preparation of aluminum matrix composites. The main procedure is: preliminarily place the reinforcement particles into the aluminum matrix through making blind holes or grooves; and then, conduct FSP, so that high density particle reinforced aluminum matrix composites can be obtained. Due to the low temperature during FSP, there occurs no interface reaction between the particles and the aluminum matrix, therefore FSP is also used to fabricate the aluminum matrix functional composites with shape memory effect (SME).
Recent studies have shown that the reinforcement particles contribute considerably to grain refinement of FSP aluminum matrix composites, which is beneficial to the improvement of mechanical properties such as tensile strength, microhardness and fatigue strength. It can be concluded that mechanical properties of the FSP particles-reinforced Al composites generally rise with the increa-sing particle content and the diminishing grain size. Moreover, smaller particles size is conducive to stronger reinforcement-matrix interfacial bonding. On the other hand, the uniform distribution of reinforcement particles in Al matrix has been realized by optimizing structure, shape and size of the stirring head, and FSP technological parameters.
In view of the advantages of FSP direct method, i.e. short process, high efficiency and clean reinforcement-matrix interface, this paper renders a vivid description about the current research status of fabricating particle reinforced aluminum matrix composites by FSP direct method. We mainly summarizes the effects of particle content, type and size on microstructure and mechanical properties of FSP-fabricated particle-reinforced aluminum matrix composites, and elaborate some noteworthy issues, including distribution uniformity of reinforcement particles and reinforcement-matrix interface. Finally, the paper ends with a critical and prospective discussion over the shortcomings in the current studies and the future research directions.
Key words:  friction stir processing    particles    aluminum matrix composite    uniformity    interface    reinforcement
                    发布日期:  2018-11-21
ZTFLH:  TG456  
基金资助: 国家自然科学基金(51574192; U1760201; 51404180)
作者简介:  席小鹏:男,1992年生,硕士研究生,主要研究方向为有色金属的搅拌摩擦加工和搅拌摩擦焊接 E-mail:xixiaopeng21@163.com;王文:通信作者,男,1985年生,高级工程师,主要从事有色金属的搅拌摩擦加工和搅拌摩擦焊接 E-mail:wangwen2016@126.com
引用本文:    
席小鹏, 王快社, 王文, 彭湃, 乔柯, 余良良. 搅拌摩擦加工制备颗粒增强铝基复合材料的研究现状及展望[J]. 材料导报, 2018, 32(21): 3814-3822.
XI Xiaopeng, WANG Kuaishe, WANG Wen, PENG Pai, QIAO Ke, YU Liangliang. Research Status and Prospect of Manufacturing Particles Reinforced Aluminum Matrix Composites by Friction Stir Processing. Materials Reports, 2018, 32(21): 3814-3822.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.019  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3814
1 Qiu H Z, Wu Z H.Development of aerospace materials abroad[J].Aerospace Materials and Technology,1997,27(4):5(in Chinese).
邱惠中,吴志红.国外航天材料的新进展[J].宇航材料工艺,1997,27(4):5.
2 Song W.Development and application of metal matrix composites[J].Research Studies on Foundry Equipment,2004(5):48(in Chinese).
宋伟. 金属基复合材料的发展与应用[J].铸造设备研究,2004(5):48.
3 吴锦波. 铝基复合材料的发展和现状[J].材料科学与工程学报,1992,10(1):6.
4 Zhu J S, Wang Z, Ou F.Application of advanced composite mate-rials in aerospace[J].New Technology and New Process,2012(10):76(in Chinese).
朱晋生,王卓,欧峰.先进复合材料在航空航天领域的应用[J].新技术新工艺,2012(10):76.
5 Jiang Q C, Wang H Y, Ma B X, et al.Fabrication of B4C particulate reinforced magnesium matrix composite by power metallurgy[J].Journal of Alloys and Compounds,2005,58(27):3509.
6 Xiu K, Jiang Q C, Ma B X.Fabrication of TiCp/Mg composites by powder metallurgy[J].Journal of Materials Science,2006,41(5):1663.
7 Wu G H, Zhang Y H, Kang P C.Microstructure and mechanical properties of Cf+SiC/Al composites fabricated by squeeze cast[J].Rare Metal Materials and Engineering,2007,36(3):328(in Chinese).
武高辉,张云鹤,康鹏超.Cf+SiCp/Al复合材料的微观组织与力学性能[J].稀有金属材料与工程,2007,36(3):328.
8 Guo J, Wang X K, Shen N F.The interfacial reaction in SiCp/Al-Si composites under conventional casting condition[J].Journal of Material Engineering,2003(12):18(in Chinese).
郭建,王西科,沈宁福.常规铸造工艺条件下SiCp/Al-Si复合材料中的界面反应[J].材料工程,2003(12):18.
9 Xu Y, Gao L, Cui C, et al.Effect of Mg on pressureless infiltration preparation of Al/SiCp ceramic matrix composites[J].Development and Application of Materials,2011,26(2):14(in Chinese).
徐跃,高霖,崔崇,等.Mg对无压渗透制备Al/SiCp陶瓷基复合材料的影响[J].材料开发与应用,2011,26(2):14.
10 Yang Y, Ram G D J, Stucker B E. An experimental determination of optimum processing parameters for Al/SiC metal matrix composites made using ultrasonic consolidation[J].Journal of Engineering Materials and Technology,2007,129(4):538.
11 Porter G A, Liaw P K, Tiegs T N, et al.Ni-Ti SMA-reinforced Al composites[J].Journal of Metals,2000,52(10):52.
12 Porter G A, Liaw P K, Tiegs T N, et al.Fatigue and fracture behavior of nickel-titanium shape-memory alloy reinforced aluminum composites[J].Materials Science and Engineering A,2001,314(1-2):186.
13 Wang K D.Mechanical properties of Friction stir processed Mg-AZ31 based composites with Al2O3 particles and ti particles[D].Dalian: Dalian University of Technology,2009(in Chinese).
王开东. 搅拌摩擦加工制备Al2O3、Ti颗粒增强AZ31镁基复合材料及其力学性能[D].大连:大连理工大学,2009.
14 Huang C P, Ke L M, Xing L, et al.Research progress and prospect of friction stir processing[J].Rare Metal Materials and Engineering,2011,40(1):183(in Chinese).
黄春平,柯黎明,邢丽,等.搅拌摩擦加工研究进展及前景展望[J].稀有金属材料与工程,2011,40(1):183.
15 Ruan A J, Ma L Q, Pan A X, et al.Study on mechanical property and damping capacity of SiC particle reinforced magnesium matrix composite produced by powder metallurgy[J].Light Alloy Fabrication Technology,2012,40(2):50(in Chinese).
阮爱杰,马立群,潘安霞,等.粉末冶金法SiCp/Mg基复合材料的力学性能和阻尼性能研究[J].轻合金加工技术,2012,40(2):50.
16 Xiao D H, Song M, Chen K H.Current status and outlook of in situ titanium matrix composites[J].Materials Review,2007,21(4):65(in Chinese).
肖代红,宋旼,陈康华.原位合成钛基复合材料的研究现状与展望[J].材料导报,2007,21(4):65.
17 Tang F, Anderson I E, Gnaupel-Herold T, et al.Pure Al matrix composites produced by vacuum hot pressing: Tensile properties and strengthening mechanisms[J].Materials Science and Engineering A,2004,383(2):362.
18 Yu X D, Wang Y W, Wang F C, et al.High volume fraction SiC particles reinforced 2024A1 composite prepared by squeeze casting[J].Journal of Material Engineering,2008(11):59(in Chinese).
于晓东,王扬卫,王富耻,等.挤压铸造制备高体积含量SiCp/2024Al复合材料[J].材料工程,2008(11):59.
19 Sunil B R, Reddy G P K, Patle H, et al. Magnesium based surface metal matrix composites by friction stir processing[J].Journal of Magnesium and Alloys,2016,4(1):52.
20 肖荣诗,康黎,杨武雄,等.铝合金厚板窄间隙激光焊接工艺技术研究[C]∥2005年中国机械工程学会年会论文集.重庆,2005:1.
21 Tjong S C, Ma Z Y.Microstructural and mechanical characteristics in situ metal matrix composites[J].Materials Science and Enginee-ring R,2000,29(3):49.
22 Liu F C, Qian T, Xing L, et al.Thermal expansion characteristic of CNTs/7075 aluminum alloy composites prepared by friction stir processing[J].The Chinese Journal of Nonferrous Metals,2017,27(2):251(in Chinese).
刘奋成,钱涛,邢丽,等.搅拌摩擦加工CNTs/7075铝基复合材料热膨胀性能[J].中国有色金属学报,2017,27(2):251.
23 Zhao X, Ke L M, Xu W P, et al.Carbon nanotubes reinforced aluminum matrix composites by friction stir processing[J].Acta Mate-riae Compositae Sinica,2011,28(2):185(in Chinese).
赵霞,柯黎明,徐卫平,等.搅拌摩擦加工法制备碳纳米管增强铝基复合材料[J].复合材料学报,2011,28(2):185.
24 Tu W B, Ke L M, Xu W P.Microstructure and hardness of MWCNTs/Al composite by friction stir processing[J].Acta Materials Compositae Sinica,2011,28(6):142(in Chinese).
涂文斌,柯黎明,徐卫平.搅拌摩擦加工制备MWCNTs/Al复合材料显微结构及硬度[J].复合材料学报,2011,28(6):142.
25 Mishra R S, Ma Z Y.Friction stir welding and processing[J].Mate-rials Science and Engineering R,2005,50(1):1.
26 Ma Z Y, Pilchak A L, Juhas M C, et al.Microstructural refinement and property enhancement of cast light alloys via friction stir processing[J].Scripta Materialia,2008,58(5):361.
27 Ran G, Zhou J E, Xi S Q, et al.Microstructure and morphology of Al-Pb bearing alloy synthesized by mechanical alloying and hot extrusion[J].Journal of Alloys and Compounds,2006,419(1):66.
28 Liu Q, Ke L M, Liu F C, et al.Microstructure and mechanical pro-perty of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing[J].Materials and Design,2013,45(45):343.
29 George R, Kashyap K T, Rahul R, et al.Strengthening in carbon nanotubes/aluminum composites[J].Scripta Materialia,2005,53(10):1159.
30 Shen J L, Li S N, Yu T Q, et al.Study on the mechanical properties and strengthening mechanism of magnesium matrix composite by powder metallurgy[J].Foundry Technology,2005,26(4):308(in Chinese).
沈金龙,李四年,余天庆,等.粉末冶金法制备镁基复合材料的力学性能和增强机理研究[J].铸造技术,2005,26(4):308.
31 Rahnama A, Qin R S.The effect of electropulsing on the interlamellar spacing and mechanical properties of a hot-rolled 0.14% carbon steel[J].Materials Science and Engineering A,2015,627:145.
32 Baramouz M, Araee A.Effect of SiC particles dispersion on the grain size and mechanical properties of Cu/SiC metal matrix nanocomposities produced via MFSP[J].Journal of Nano Research,2014,26(10):53.
33 Liu F C, Xiong Q P, Liu Q, et al.Fatigue property of carbon nanotubes reinforced 7075 Al alloy composite prepared by friction stir processing[J].Rare Metal Materials and Engineering,2015,44(7):1786(in Chinese).
刘奋成,熊其平,刘强,等.搅拌摩擦加工碳纳米管增强7075铝基复合材料的疲劳性能[J].稀有金属材料与工程,2015,44(7):1786.
34 Wang C C.Microstructure and properties of SiCp/Cu composites for electronic packing[D].Jinan:Shandong University,2007(in Chinese).
王常春. 电子封装用SiCp/Cu复合材料的微观组织和性能研究[D].济南:山东大学,2007.
35 Devaraju A, Kumar A, Kotiveerachari B.Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing[J].Transactions of Nonferrous Metals Society of China,2013,23(5):1275.
36 Sahraeinejad S, Izadi H, Haghshenas M, et al.Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters[J].Materials Science and Engineering A,2015,626(25):505.
37 Sankaranarayanan S, Jayalakshmi S, Gupta M.Hybridizing micro-Ti with nano-B4C particulates to improve the microstructural and mechanical characteristics of Mg-Ti composite[J].Journal of Magne-sium and Alloys,2014,2(1):13.
38 Williams J, Piotrowski G, Saha R.Effect of overaging and particle size on tensile deformation and fracture of particle-reinforced aluminum matrix composites[J].Metallurgical and Materials Transactions A,2002,33(12):3861.
39 Jin Y H, Zhao J B, Zhang Z K.Influence of groove position on uniformity of SiCp/aluminum-based composite[J].Journal of Lanzhou University of Technology,2015,41(3):10(in Chinese).
金玉花,赵敬彬,张忠科.开槽位置对搅拌摩擦加工制备SiCp/铝基复合材料均匀性的影响[J].兰州理工大学学报,2015,41(3):10.
40 Jin Y H, Wen Y, Li C F, et al.Research on microstructure and performance of aluminum matrix composite by friction stir processing[J].Hot Working Technology,2014,43(16):115(in Chinese).
金玉花,温雨,李常锋,等.搅拌摩擦加工制备铝基复合材料组织性能研究[J].热加工工艺,2014,43(16):115.
41 Shafiei-Zarghani A, Kashani-Bozorg S F, Zarei-Hanzaki A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing[J].Materials Science and Engineering A,2009,500(1-2):84.
42 Mahmoud E R I, Takahashi M, Shibayanagi T, et al. Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface[J].Science and Technology of Wel-ding and Joining,2009,14(5):413.
43 Li W L, Xia C, Xing L, et al.Influence of pin shape on homogeneity of CNTs distribution in CNTs/Al composite fabricated by friction stir processing[J].Journal of Material Engineering,2014(1):75(in Chinese).
李文龙,夏春,邢丽,等.搅拌针形状对搅拌摩擦加工制备CNTs/铝基复合材料均匀性的影响[J].材料工程,2014(1):75.
44 Ke L M, Pan J L, Xing L, et al.Sucking-extruding theory for the material flow in friction stir welds[J].Journal of Mechanical Engineering,2009,45(4):89(in Chinese).
柯黎明,潘际銮,邢丽,等.搅拌摩擦焊焊缝金属塑性流动的抽吸-挤压理论[J].机械工程学报,2009,45(4):89.
45 Shi Q Y, Sun K, Wang W, et al.Flow behavior of SiC particles as tracer material during the fabrication of MMCs by friction stir processing[J].Metals and Materials Society,2013,12(3):29.
46 Lim D K, Shibayanagi T, Gerlich A P.Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir proces-sing[J].Materials Science and Engineering A,2009,507(1-2):194.
47 Bauri R, Yadav D, Kumar C N S, et al. Tungsten particle reinforced Al 5083 composite with high strength and ductility[J].Materials Science and Engineering A,2015,620:67.
48 Rhodes C G, Mahoney M W, Bingel W H, et al.Effects of friction stir welding on microstructure of 7075 aluminum[J].Scripta Materialia,1997,36(1):69.
49 Mahoney M W, Rhodes C G, Flintoff J G, et al.Properties of friction-stir-welded 7075 T651 aluminum[J].Metallurgical and Materials Transactions A,1998,29(7):1955.
50 Sun L, Huang W M, Ding Z, et al.Stimulus-responsive shape me-mory materials: A review[J].Materials and Design,2012,33(1):577.
51 Jani J M, Leary M, Subic A, et al.A review of shape memory alloy research, applications and opportunities[J].Materials and Design,2014,56(4):1078.
52 Dixit M, Newkirk J W, Mishra R S.Properties of friction stir-processed Al 1100-NiTi composite[J].Scripta Materialia,2007,56(6):541.
53 Ni D R, Wang J J, Zhou Z N, et al.Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing[J].Journal of Alloys and Compounds,2014,586(3):368.
54 Zhou Z N.The study of TiNi particles reinforced aluminum matrix composites prepared by friction stir processing[D].Shenyang: Shenyang Aerospace University,2011(in Chinese).
周志南. 搅拌摩擦加工制备TiNi颗粒增强Al基复合材料的研究[D].沈阳:沈阳航空航天大学,2011.
55 Sato Y S, Urata M, Kokawa H.Parameters controlling microstructure and hardness during friction-stir welding of precipitation-harde-nable aluminum alloy 6063[J].Metallurgical and Materials Transaction A,2002,33(3):625.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[3] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[4] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[5] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[6] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[7] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[8] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[9] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[10] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[11] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[12] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[13] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[14] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[15] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed