Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22060207-7    https://doi.org/10.11896/cldb.22060207
  无机非金属及其复合材料 |
相变云砼石水泥基复合材料的制备及性能研究
张东方1, 梁威1, 杨才千1,2,*, 陈俊1, 李敏2, 许福1, 徐利敏1
1 湘潭大学土木工程与力学学院,湖南 湘潭 411105
2 东南大学土木工程学院,南京 210096
Study on the Preparation and Properties of Phase Change Cloud Concrete Stone Cementitous Composites
ZHANG Dongfang1, LIANG Wei1, YANG Caiqian1,2,*, CHEN Jun1, LI Min2, XU Fu1, XU Limin1
1 College of Civil Engineering and Mechanics,Xiangtan University,Xiangtan 411105, Hunan, China
2 School of Civil Engineering,Southeast University,Nanjing 210096,China
下载:  全 文 ( PDF ) ( 5906KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以石蜡为相变材料,云砼石为吸附基体,采用真空吸附的方式提高云砼石的石蜡吸附率,使用环氧树脂与水泥粉结合的方式对其进行封装,制备相变云砼石骨料和相变云砼石混凝土,并对其力学性能和热工性能进行研究。结果表明:真空吸附可大幅提升相变云砼石骨料的石蜡吸附率,环氧树脂与水泥粉的复合封装可将石蜡泄漏率降低至0.2%以下。随着相变骨料掺量的增加,相变云砼石混凝土的力学性能出现下降的趋势,但其储放热效果逐渐增强。当相变骨料掺量为50%(质量分数,下同)时,相变云砼石混凝土的抗压强度为30.9 MPa,相较于普通云砼石混凝土(36.7 MPa)下降了15.8%,劈裂抗拉强度为3.2 MPa,相较于普通云砼石混凝土(4.6 MPa)下降了30.4%。相变云砼石混凝土的储热性能良好,经过150次相变循环后其强度呈现上升的趋势,满足LC30混凝土的基本要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张东方
梁威
杨才千
陈俊
李敏
许福
徐利敏
关键词:  相变石蜡  复合相变骨料  相变混凝土  封装  力学性能  热工性能    
Abstract: The phase-change cloud concrete stone (CCS) aggregate and phase-change CCS concrete were prepared by vacuum adsorption to improve the paraffin adsorption rate of CCS, which used paraffin as the phase change material (PCM) and CCS as the adsorption matrix. Then the epoxy resin and cement powder were combined to encapsulate them, and their mechanical and thermal properties were studied. The results revealed that vacuum adsorption can significantly improve the paraffin adsorption rate of phase-change CCS aggregates, and the composite encapsulation of epoxy resin and cement powder can reduce the paraffin leakage rate to below 0.2%. With the increase of phase change aggregate content, the mechanical properties of phase-change CCS concrete gradually decrease, but its heat storage and release effect gradually enhanced. The compressive strength of the phase change CCS concrete was 30.9 MPa when the mixture is 50%, which was 15.8% smaller than that of normal CCS concrete (36.7 MPa), and the splitting tensile strength was 3.2 MPa, which was 30.4% lower than that of normal CCS concrete (4.6 MPa). The heat storage performance of the phase-change CCS concrete is excellent. Its strength shows an increasing trend after 150 phase-change cycles, meeting the basic requirements of LC30 concrete.
Key words:  phase change paraffin    composite phase change aggregate    phase change concrete    encapsulation    mechanical property    thermal performance
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TU55  
基金资助: 国家自然科学基金(52078122);准格尔旗科技支撑计划项目(2019003)
通讯作者:  * 杨才千,东南大学土木工程学院教授、博士研究生导师,湖南省“芙蓉学者计划”特聘教授。1998年获得湖南科技大学学士学位,2001年获得湘潭大学硕士学位,2006年获得日本国立茨城大学工学博士学位。主要从事复合材料与结构、智能材料与结构、先进传感与结构健康监测等方面的研究。发表国内外核心期刊论文近100余篇,申请发明专利60余项(授权30余项)。先后获得教育部科技进步一等奖、国家科技进步二等奖、江苏省科技进步一等奖等奖励。ycqjxx@seu.edu.cn   
作者简介:  张东方,2020年6月获得河南科技大学工学学士学位,现为湘潭大学土木工程学院硕士研究生,在杨才千教授的指导下进行研究。目前主要研究领域为相变储能混凝土。
引用本文:    
张东方, 梁威, 杨才千, 陈俊, 李敏, 许福, 徐利敏. 相变云砼石水泥基复合材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22060207-7.
ZHANG Dongfang, LIANG Wei, YANG Caiqian, CHEN Jun, LI Min, XU Fu, XU Limin. Study on the Preparation and Properties of Phase Change Cloud Concrete Stone Cementitous Composites. Materials Reports, 2023, 37(23): 22060207-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060207  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22060207
1 Ostry M, Bantová S, Struhala K. Molecules, 2020, 25(12), 2823.
2 Bentz D P, Turpin R. Cement and Concrete Composites, 2007, 29(7), 527.
3 Li J, Zhang J, Fu M Q. Materials Reports, 2021, 35(S2), 483(in Chinese).
李洁, 张佳, 付明琴.材料导报, 2021, 35(S2), 483.
4 Ahmet S, Tawfik A S, Gökhan H, et al. Journal of Molecular Liquids, 2021, 328, 115508.
5 Li L.Preparation and properties of phase change materials and energy sto-rage concrete. Master's Thesis, Chongqing University, China, 2010 (in Chinese).
李莉. 相变材料及其储能混凝土的制备与性能研究.硕士学位论文,重庆大学, 2010.
6 Wang X, Fang J H, Wu Jiang. New Chemical Materials, 2019, 47(9), 58(in Chinese).
王鑫, 方建华, 吴江.化工新型材料, 2019, 47(9), 58.
7 Zhou J T, Nie Z X, Guo Z W, et al. Journal of Jiangsu University(Natural Science Edition), 2020, 41(5), 588.
周建庭, 聂志新, 郭增伟, 等. 江苏大学学报(自然科学版), 2020, 41(5), 588.
8 Tian Y, Lai Y M, Pei W S, et al. Construction and Building Materials, 2022, 127(329), 225.
9 Zhao S X, Yan H, Wang H T. Materials Reports,2017, 31(10), 107(in Chinese).
赵思勰, 晏华, 汪宏涛.材料导报, 2017, 31(10), 107.
10 Zhu J Q, Li J L, Zhou W B. Energy Storage Science and Technology,2017, 6(2), 255(in Chinese).
朱教群, 李佳龙, 周卫兵. 储能科学与技术, 2017, 6(2), 255.
11 Wang W T, Ma Q Y, Bai M. Science, Technology and Engineering, 2016, 16(22), 95(in Chinese).
王文涛, 马芹永, 白梅.科学技术与工程, 2016, 16(22), 95.
12 Chen P, Jiang D H, Xu Y Z, et al. Applied Chemical Industry, 2022,51(12), 3721.
陈璞, 蒋达华, 徐玉珍, 等. 应用化工, 2022,51(12), 3721.
13 Dong L Y, Zhang T, Qian C Y. New Chemical Materials, 2019,47(9), 14.
董玲玉, 张婷, 钱春园.化工新型材料, 2019,47(9), 14.
14 Aftab W, Huang X, Wu W. Energy & Environmental Science, 2018, 11(6), 1392.
15 Zhou D Y, Xiao X H, Xiao B. Journal of Chemical Engineering, 2021, 72(S1), 560(in Chinese).
周东一, 肖湘华, 肖飚.化工学报, 2021, 72(S1), 560.
16 Zhou L R, Geng F, Xi Y T. New Building Materials, 2017, 44(7), 71(in Chinese).
周利睿, 耿飞, 习雨同.新型建筑材料, 2017, 44(7), 71.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[9] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[10] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[11] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[12] 孙宗旭, 张焕芝, 荆锐, 吴博竞, 徐芬, 夏永鹏, 孙立贤. 相变复合纳米纤维的研究与应用[J]. 材料导报, 2023, 37(7): 21060061-8.
[13] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[14] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[15] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed