Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22070005-5    https://doi.org/10.11896/cldb.22070005
  无机非金属及其复合材料 |
NaCl干湿交替作用对复配水泥活性粉末混凝土性能的影响
汪晖*, 王轲炜, 梁昭
宁波大学土木工程与地理环境学院,浙江 宁波 315211
Effect of NaCl Dry-Wet Cycles on Properties of Mixed Cement Reactive Powder Concrete
WANG Hui*, WANG Kewei, LIANG Zhao
School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211,Zhejiang, China
下载:  全 文 ( PDF ) ( 8276KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了硫铝酸盐水泥(SAC)和聚丙烯纤维(PPFs)掺量对活性粉末混凝土(RPC)养护1、3、7、14和28 d抗压、抗弯强度的影响。此外,本工作研究了NaCl干湿交替作用对复配水泥(SAC占水泥总质量的50%)RPC抗压强度、抗折强度、粘结强度以及氯离子渗透系数的影响。结果表明,早龄期(养护龄期低于7 d)RPC中SAC掺量增加有助于RPC抗压和抗折强度的提升。当养护龄期大于7 d时,RPC抗压和抗折强度会随着SAC的加入而下降。对于掺入量为50% SAC的RPC试件,其强度会随着PPFs体积率的增加而整体上升,当纤维体积率从2.5%增加至3.0%时,RPC的强度趋于稳定。NaCl干湿交替作用会引起RPC强度降低,并增加RPC的氯离子渗透性。PPFs的掺入会延缓RPC强度的降低并减小氯离子的渗透性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪晖
王轲炜
梁昭
关键词:  硫铝酸盐水泥(SAC)  聚丙烯纤维(PPFs)  活性粉末混凝土(RPC)  强度  NaCl干湿交替    
Abstract: Effects of the compressive and flexural strengths of reactive powder concrete (RPC) cured for 1, 3, 7, 14 and 28 d after adding sulphoaluminate cement (SAC)were studied. In addition, the effects of NaCl dry-wet cycles on RPC compressive strength, flexural strength, bond strength and chloride ion permeability coefficient of composite cement (SAC accounts for 50% of the total cement) were emphatically studied. Results show that the increase of SAC content in RPC at early ages (less than 7 d) has a positive impact on its compressive and flexural strength. However, when the curing age is greater than 7 d, the addition of SAC has a negative effect on the compressive and flexural strength of RPC. For RPC with 50% SAC, the strength will grow with the volume fraction of PPFs increases. When the fiber volume fraction increases from 2.5% to 3.0%, the strength of RPC tends to be stable. NaCl dry-wet cycles will reduce the strength of RPC and increase the chloride ion permeability of RPC. The addition of PPFs will delay the decrease of RPC strength and reduce the permeability of chloride ions.
Key words:  sulphoaluminate cement (SAC)    polypropylene fibers (PPFs)    reactive powder concrete (RPC)    strength    NaCl dry-wet cycle
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TU528.3  
基金资助: 浙江省自然科学基金(LY22E080005)
通讯作者:  * 汪晖,宁波大学土木与环境工程学院副教授、博士研究生导师。2011年华东交通大学土木建筑学院土木工程专业本科毕业,2017年哈尔滨工业大学土木工程专业博士毕业后到宁波大学工作至今。目前主要从事多功能智能混凝土、防灾减灾、生态建筑材料、桥面板修复、混凝土耐久性、工程灾害预测等方面的研究工作。发表论文40余篇,包括Cement and Concrete Composite、Construction and Buil-ding Materials、Cold Regions Science and Technology、Materials Research Express、Materials、Coatings、《硅酸盐通报》等。wanghui4@nbu.edu.cn   
引用本文:    
汪晖, 王轲炜, 梁昭. NaCl干湿交替作用对复配水泥活性粉末混凝土性能的影响[J]. 材料导报, 2023, 37(23): 22070005-5.
WANG Hui, WANG Kewei, LIANG Zhao. Effect of NaCl Dry-Wet Cycles on Properties of Mixed Cement Reactive Powder Concrete. Materials Reports, 2023, 37(23): 22070005-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070005  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22070005
1 Wang H, Cai X, Rao C M, et al. Materials, 2022, 15(9), 3371.
2 Tang X D, Xu Q, Qian K L, et al.Construction and Building Materials, 2021, 303, 124139.
3 Zhou S, Woody J. International Journal of Damage Mechanics, 2021, 30(8), 1213.
4 Hong X H, Wang H, Shi F T, et al.Coatings, 2020, 10(12), 1227.
5 Wang H, Jin K K, Zhang A L, et al. Construction and Building Mate-rials, 2021, 275, 06629.
6 Gencel O, Ozel C, Brostow W, et al.Materials Research Innovations, 2011, 15, 216.
7 Soutsos M, Le T, Lampropoulos A, et al.Construction and Building Materials, 2012, 36, 704.
8 Liu Y S, Tian W C, Wang M Z, et al. Construction and Building Mate-rials, 2020, 244, 118344.
9 Ding Y N, Wang Q X, Pacheco-Torgal F, et al. Construction and Buil-ding Materials, 2020, 261, 119881.
10 Wang J M, Xiao Z Q, Fan Y T, et al. Materials Reports, 2022, 36(2), 87(in Chinese).
王建民, 肖自强, 范奕涛, 等. 材料导报, 2022, 36(2), 87.
11 Ding Y N, Huang Y S, Zhang Y L, et al. Construction and Building Materials, 2015, 101, 440.
12 Jiang W Q, Shen X H, Xia J, et al. Construction and Building Materials, 2018, 179, 553.
13 Liu X R, Wang R. Journal of the Chinese Ceramic Society, 2022, 50(2), 354(in Chinese).
刘校荣, 王茹. 硅酸盐学报, 2022, 50(2), 354.
[1] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[2] 唐芮枫, 张佳乐, 王子明, 崔素萍, 王肇嘉, 兰明章. C-S-H纳米晶种及其对水泥水化硬化的促进作用综述[J]. 材料导报, 2023, 37(9): 21090259-16.
[3] 刘晓, 谢辉, 罗奇峰, 王子明, 崔素萍, 郭金波, 张冠华. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 21100165-6.
[4] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[5] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[6] 黄威, 王轩, 李永清, 王源升, 王博, 王玉江, 魏世丞. 微波吸收材料电磁特性响应规律及影响因素研究进展[J]. 材料导报, 2023, 37(7): 21090051-11.
[7] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[8] 李双捷, 马昆林, 龙广成, 谢友均, 曾晓辉. 持续荷载作用下砂浆裂缝的自修复性能及其评价指标[J]. 材料导报, 2023, 37(5): 21070056-9.
[9] 宋春鹏, 由爽, 纪洪广, 孙利辉. 相似材料抗压强度正交试验与材料强度影响系数研究[J]. 材料导报, 2023, 37(23): 22090218-6.
[10] 王凤姣, 白晓宇, 张云光, 井德胜, 张明义, 王海刚, 侯东帅. 不同材质抗浮锚杆与基础底板的黏结强度试验研究[J]. 材料导报, 2023, 37(22): 22050046-8.
[11] 何松松, 焦楚杰, 欧旭. 高强抗冻透水混凝土的配合比设计与性能评估[J]. 材料导报, 2023, 37(21): 23070257-7.
[12] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[13] 叶家元, 李国豪, 史迪, 任雪红, 吴春丽, 张洪滔, 张文生. 矿渣/偏高岭土复合前驱体原位转化沸石的影响因素研究[J]. 材料导报, 2023, 37(21): 22040092-8.
[14] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[15] 李金鑫, 孙伟, 李兆宇, 陈冲, 刘增, 姜明归, 樊凯. 冲击荷载作用下分层充填体能量演化与破坏模式分析[J]. 材料导报, 2023, 37(20): 22030169-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed