Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22030169-9    https://doi.org/10.11896/cldb.22030169
  无机非金属及其复合材料 |
冲击荷载作用下分层充填体能量演化与破坏模式分析
李金鑫1,2, 孙伟1,2,*, 李兆宇1,2, 陈冲3, 刘增1,2, 姜明归1,2, 樊凯1,2
1 昆明理工大学国土资源工程学院,昆明 650093
2 云南省中-德蓝色矿山与特殊地下空间开发利用重点实验室,昆明 650093
3 北京科技大学土木与资源工程学院,北京 100083
Analysis of Energy Evolution and Failure Mode of Layered Backfill Under Impact Load
LI Jinxin1,2, SUN Wei1,2,*, LI Zhaoyu1,2, CHEN Chong3, LIU Zeng1,2, JIANG Minggui1,2, FAN Kai1,2
1 Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Yunnan Key Laboratory of Sino-German Blue Mining and Utilization of Special Underground Space, Kunming 650093, China
3 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 40912KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 充填体破坏的实质是能量吸收与耗散,为得到冲击荷载作用下分层充填体的能量演化与破坏模式,采用φ50 mm 霍普金森压杆测试系统,研究不同应变率、不同层间质量浓度对分层充填体动力学特性、能量演化及破坏模式的影响规律。结果表明,分层充填体的动态峰值强度随平均应变率的增加而增大,且充填体所受各能量值与平均应变率呈正相关。随分层充填体平均质量浓度的增加,充填体的透射能逐渐减小,吸收能逐渐增大,且中间分层质量浓度的改变对充填体的动态峰值强度及能量演化规律均产生较大影响;由LS-DYNA数值模拟及实验结果可知,分层充填体的破坏主要发生于浓度较低的充填体层且易沿分层面处发生断裂现象。本研究成果可为井下分层充填体的强度值设计提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李金鑫
孙伟
李兆宇
陈冲
刘增
姜明归
樊凯
关键词:  分层充填体  动态峰值强度  动态强度增长因子  破坏模式  能量耗散    
Abstract: The essence of backfill failure is energy absorption and dissipation. In order to obtain the energy evolution and failure mode of layered backfill under impact load, a 50 mm Hopkinson pressure bar test system was used to study the influence of different strain rates and interlayer mass concentrations on the dynamic characteristics, energy evolution and failure mode of layered backfill. The results show that the dynamic peak strength of layered backfill increases with the increase of average strain rate, and the energy values of backfill are positively correlated with ave-rage strain rate. With the increase of the average mass concentration of layered backfill, the transmission energy of backfill decreases and the absorption energy increases, and the change of the mass concentration of intermediate layered backfill has a great influence on the dynamic peak strength and energy evolution law of backfill. According to LS-DYNA numerical simulation and experimental results, the failure of layered backfill mainly occurs in the backfill layer with low concentration, and it is easy to fracture along the layered backfill layer. The research results can provide theoretical basis for the strength value design of underground layered backfill.
Key words:  layered backfill    dynamic peak strength    dynamic strength growth factor    failure mode    energy dissipation
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TD853  
基金资助: 国家自然科学基金(51964023); 云南省重大科技项目(202202AG050014);云南省基础研究计划项目(202101BE070001-038; 202201AT070146);国家重点研发计划项目(2019YFC1904202);云南省创新团队资助项目(202105AE160023);云南省教育厅科学研究基金项目(2022J0055)
通讯作者:  *孙伟,教授,云南省“万人计划”青年拔尖人才,昆明理工大学国土资源工程学院资源开发工程系主任,兼任中国有色金属学会第八届采矿学术委员会委员、中国(德国)研发创新联盟-碳中和与能源转型专业委员会委员等。长期从事金属矿充填理论与技术相关的教学科研工作。主持并参与了包括中国有色矿业集团、中国铝业、云南锡业、中国黄金集团等企业横向科研项目36余项,国家自然科学基金、国家重点研发计划等项目5项。发表学术论文60余篇,其中SCI/EI收录20篇。获中国有色金属工业科学技术奖一等奖、中国黄金协会科学技术奖二等奖等奖励。kmustsw@qq.com   
作者简介:  李金鑫,2018年7月毕业于黑龙江科技大学,获得工学学士学位,2019年9月至今在昆明理工大学攻读硕士学位,研究方向主要为膏体充填及绿色开采。共发表EI论文1篇,SCI论文2篇,授权专利2项。
引用本文:    
李金鑫, 孙伟, 李兆宇, 陈冲, 刘增, 姜明归, 樊凯. 冲击荷载作用下分层充填体能量演化与破坏模式分析[J]. 材料导报, 2023, 37(20): 22030169-9.
LI Jinxin, SUN Wei, LI Zhaoyu, CHEN Chong, LIU Zeng, JIANG Minggui, FAN Kai. Analysis of Energy Evolution and Failure Mode of Layered Backfill Under Impact Load. Materials Reports, 2023, 37(20): 22030169-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030169  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22030169
1 Hou Y Q, Yin S H, Cao Y, et al. Materials Reports, 2020, 34(14), 14063(in Chinese).
侯永强, 尹升华, 曹永, 等. 材料导报, 2020, 34(14), 14063.
2 Dong Y, Yang Z Q, Gao Q. Materials Reports, 2018, 32(6), 1032(in Chinese).
董越, 杨志强, 高谦. 材料导报, 2018, 32(6), 1032.
3 Yin S H, Shao Y J, Wu A X, et al. Construction and Building Materials, 2018, 165, 138.
4 Lan W T, Wu A X, Yu P. Journal of Cleaner Production, 2020, 246, 1.
5 Xiu Z G, Wang S H, Wang F L, et al. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(8), 1628(in Chinese).
修占国, 王述红, 王斐笠, 等. 岩石力学与工程学报, 2021, 40(8), 1628.
6 Fang K, Mamadou F. Rock Mechanics and Rock Engineering, 2020, 53(1), 325.
7 Zhou X L, Hu S H, Zhang G, et al. Construction and Building Materials, 2019, 226, 524.
8 Ji K, Han B, Hu Y F, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(3), 796(in Chinese).
吉坤, 韩斌, 胡亚飞, 等. 中国有色金属学报, 2021, 31(3), 796.
9 Wu S, Song W D, Zhang X C, et al. Metal Mine, 2014(2), 30(in Chinese).
吴姗, 宋卫东, 张兴才, 等. 金属矿山, 2014(2), 30.
10 Dong L, Gao Q, Nan S Q, et al. Journal of Central South University(Science and Technology), 2013, 44(4), 1571(in Chinese).
董璐, 高谦, 南世卿, 等. 中南大学学报(自然科学版), 2013, 44(4), 1571.
11 Sun W, Wu A X, Hou K P, et al. Construction and Building Materials, 2016, 153, 153.
12 Xue G L, Yilmaz E, Feng G R, et al. Construction and Building Materials, 2021, 279, 1.
13 Jiang L C, Su Y, Dai Q S. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1), 34(in Chinese).
姜立春, 苏勇, 代庆松. 岩石力学与工程学报, 2020, 39(1), 34.
14 Wen X, Zhao L, Guo X Q. Mining and Metallurgical Engineering, 2021, 41(5), 32(in Chinese).
文兴, 赵亮, 郭晓强. 矿冶工程, 2021, 41(5), 32.
15 Dai C Q, Wu A X, Qi Y, et al. Journal of the Institution of Engineers(India), 2019, 100(6), 307.
16 Li X L, Yuan Z B, Wang J G, et al. Engineering Blasting, 2021, 27(3), 1(in Chinese).
李祥龙, 袁芝斌, 王建国, 等. 工程爆破, 2021, 27(3), 1.
17 Cao S, Xue G L, Song W D, et al. Construction and Building Materials, 2020, 247, 1.
18 Zheng D, Song W D, Cao S, et al. Minerals, 2021, 11(5), 1.
19 Xue G L, Erol Y, Song W D, et al. Composites Part B: Engineering, 2019, 175, 1.
20 Wang J, Fu J X, Song W D, et al. Construction and Building Materials, 2020, 261, 1.
21 Cao S, Song W D, Xue G L, et al. Rock and Soil Mechanics, 2015, 36(10), 2869(in Chinese).
曹帅, 宋卫东, 薛改利, 等. 岩土力学, 2015, 36(10), 2869.
22 Chang Q L, Leng Q, Yuan C L, et al. Journal of Mining & Safety Engineering, 2021, 38(5), 919(in Chinese).
常庆粮, 冷强, 袁崇亮, 等. 采矿与安全工程学报, 2021, 38(5), 919.
23 Liu E Y, Zhang Q L, Feng Y, et al. Environmental Earth Sciences, 2017, 76(20), 689.
24 Gong F Q, Si X F, Li X B et al. International Journal of Rock Mechanics and Mining Sciences, 2019, 113, 211.
25 Li X B, Zhou Z L, Tat-Seng L, et al. International Journal of Rock Mechanics and Mining Sciences, 2007, 45(5), 739.
26 Hou Y Q, Yin S H, Yang S X, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(6), 1661(in Chinese).
侯永强, 尹升华, 杨世兴, 等. 中国有色金属学报, 2021, 31(6), 1661.
27 Cao S, Erol Y, Song W D. Construction and Building Materials, 2018, 186, 892.
28 Hou Y Q, Yin S H, Yang S X, et al. Journal of Central South University(Science and Technology), 2020, 48(8), 50(in Chinese).
侯永强, 尹升华, 杨世兴, 等. 华中科技大学学报(自然科学版), 2020, 48(8), 50.
29 Li C J, Xu Y, Zhang Y T, et al. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11), 2231(in Chinese).
李成杰, 徐颖, 张宇婷, 等. 岩石力学与工程学报, 2019, 38(11), 2231.
30 Hou Y Q, Yin S H, Yang S X, et al. Rock and Soil Mechanics, 2021, 43(S1), 1(in Chinese).
侯永强, 尹升华, 杨世兴, 等. 岩土力学, 2021, 43(S1), 1.
31 Yang B G, Yang H G. Journal of Mining Science and Technology, 2022, 7(3), 304(in Chinese).
杨宝贵, 杨海刚. 矿业科学学报, 2022, 7(3), 304.
32 Liu J, Li F H, Liu X X. Engineering Blasting, 2021, 27(2), 35(in Chinese).
刘锦, 李峰辉, 刘秀秀. 工程爆破, 2021, 27(2), 35.
33 Zhu P R, Song W D, Xu L H, et al. Journal of Vibration and Shock, 2018, 37(12), 131(in Chinese).
朱鹏瑞, 宋卫东, 徐琳慧, 等. 振动与冲击, 2018, 37(12), 131.
34 Hao Y F, Hao H, Li Z X. International Journal of Protective Structures, 2010, 1(1), 145.
[1] 张奇, 张震东, 任杰, 姚琳, 吴林华. 正六边形玻璃纤维多胞结构面外准静态压缩试验[J]. 材料导报, 2023, 37(7): 21090225-8.
[2] 陈立超, 王生维, 张典坤. 基于SHPB实验的煤层气井固井水泥冲击能量耗散特征研究[J]. 材料导报, 2021, 35(Z1): 232-237.
[3] 喻宣瑞, 姚国文, 范伟庆. 交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J]. 材料导报, 2021, 35(20): 20087-20091.
[4] 陈宇良, 姜锐, 陈宗平, 刘杰. 直剪状态下再生混凝土的变形性能及损伤分析[J]. 材料导报, 2021, 35(19): 19015-19021.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed