Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22070261-5    https://doi.org/10.11896/cldb.22070261
  无机非金属及其复合材料 |
纳米偏高岭土及细骨料对UHPC力学性能的影响
边晨1,2,†, 郭君渊3,†, 肖建庄2, 赵长军1,*
1 浙江数智交院科技股份有限公司,杭州 310030
2 同济大学土木工程学院,上海 200092
3 同济大学材料科学与工程学院,上海 201804
Effect of Nano-metakaolin and Fine Aggregate on the Mechanical Behavior of Ultra High Performance Concrete
BIAN Chen1,2,†, GUO Junyuan3,†, XIAO Jianzhuang2, ZHAO Changjun1,*
1 Zhejiang Institute of Communications Co., Ltd., Hangzhou 310030, China
2 College of Civil Engineering, Tongji University, Shanghai 200092, China
3 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 8489KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用优良的矿物掺和料和绿色细骨料取代部分水泥和石英砂的方式制备生态型超高性能混凝土(UHPC),可优化其性能并降低材料制备过程中的碳排放。目前尚缺乏对生态型UHPC材料的拉伸应变强化性能的研究。通过轴拉试验、抗压强度及工作性能测试,研究纳米偏高岭土掺量(0%、3%及6%)及细骨料类型(石英砂、河砂及机制砂)对UHPC力学性能的影响规律,并结合微观结构分析阐明纳米偏高岭土及机制砂对UHPC拉伸应变强化性能的影响机理。研究表明:纳米偏高岭土可提高钢纤维-UHPC基体界面的粘结性能,提升UHPC拉伸应变强化能力及钢纤维有效锚固恢复效率。机制砂可提高UHPC的开裂强度,使其拉伸应变强化能力提升受限;钢纤维拔出阶段机制砂不能提供有效的摩擦阻力,拔出的钢纤维表面沟槽不明显且粘连较少的基体碎渣,加快了UHPC的应变软化速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
边晨
郭君渊
肖建庄
赵长军
关键词:  超高性能混凝土(UHPC)  纳米偏高岭土  机制砂  拉伸应变强化  微观分析    
Abstract: Using good mineral admixtures and green fine aggregates to partially replace cements and quartz sands to prepare ecological ultra high performance concrete (UHPC) can optimize its properties and reduce the carbon emission during material preparation. There is a lack of research about the tensile strain hardening behavior of ecological UHPC. The influence of nano-metakaolin contents (0%, 3% and 6%) and fine aggregate types (quartz sand, river sand and manufactured sand) on the mechanical properties of UHPC was studied via uniaxial tensile tests, compressive strength tests and workability measurements. Finally, the tensile strain hardening mechanism of UHPC incorporated with nano-metakaolin and manufactured sand was clarified based on microstructural analysis. The results show that nano-metakaolin can improve the bond behavior of steel fiber-UHPC matrix interface, and increase the strain hardening capacity of UHPC and raise the recovery efficiency of steel fiber effective anchorage. The promotion space of the strain hardening capacity of UHPC incorporated with manufactured sands is relatively low due to that manufactured sands can improve the high cracking strength of UHPC. The drawing resistance provided by manufactured sands for steel fibers is insufficient during steel fiber pulling out, and the scratch grooves are unobvious and the crushed debris of UHPC matrix is slight on the surface of the pulled-out steel fibers. This makes the tensile strain softening rate of UHPC accelerated.
Key words:  ultra high performance concrete (UHPC)    nano-metakaolin    manufactured sand    tensile strain hardening    microstructural analysis
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TU528  
基金资助: 浙江省交通运输厅科技计划项目(2021030);国家自然科学基金(52078358;52108239);中国博士后科学基金面上项目(2020M671215)
通讯作者:  * 赵长军,2003年获得浙江大学土木工程专业博士学位,现任浙江数智交院科技股份有限公司副总经理,国家一级注册结构工程师,国家一级注册建造师,正高级工程师。负责和参与科研课题13项(获奖6项),发表论文10篇,出版专著1部,获授权专利6项,编写行业和地方标准7项。zhaocj1971@163.com   
作者简介:  边晨,2021年1月于同济大学土木工程学院获得工学博士学位。现为浙江数智交院科技股份有限公司与同济大学土木工程学院联合培养博士后,近六年来一直致力于超高性能混凝土(UHPC)的应用基础理论相关的研究工作,在Construction & Buil-ding Materials、《材料导报》等国内外权威杂志上共发表学术论文7篇。郭君渊,2019年11月于同济大学土木工程学院获得工学博士学位。现为同济大学材料科学与工程学院博士后,自2015年开始一直从事超高性能混凝土(UHPC)材料及其结构应用的研究,作为项目负责人主持中国博士后科学基金1项及国家自然科学基金青年基金1项。在Cement & Concrete Compo-sites、Composite Structures、Construction & Building Materials、《土木工程学报》等国内外权威杂志上发表JCR一区SCI论文7篇、EI论文5篇。
†共同第一作者
引用本文:    
边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
BIAN Chen, GUO Junyuan, XIAO Jianzhuang, ZHAO Changjun. Effect of Nano-metakaolin and Fine Aggregate on the Mechanical Behavior of Ultra High Performance Concrete. Materials Reports, 2023, 37(23): 22070261-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070261  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22070261
1 Zhao Y H, Sun Z P, Mu F Y, et al. Journal of Building Materials, 2021, 24(2), 276 (in Chinese).
赵一鹤, 孙振平, 穆帆远, 等. 建筑材料学报, 2021, 24(2), 276.
2 Yoo D Y, Banthia N. Cement and Concrete Composites, 2016, 73, 267.
3 Huang B T, Wang Y T, Wu J Q, et al. Advances in Structural Enginee-ring, 2020, 6(24), 1182.
4 Yu R. China Concrete, 2020(8), 30 (in Chinese).
余睿.混凝土世界, 2020(8), 30.
5 Xiao J Z, Schneider H, Donnecke C,et al. Construction and Building Materials, 2004, 18(6), 9.
6 Wei H N, Liu T J, Zou D J, et al. Journal of Building Materials, 2021, 24(3), 492 (in Chinese).
魏慧男, 刘铁军, 邹笃建, 等. 建筑材料学报, 2021, 24(3), 492.
7 Long G C, Yang K, Cheng Z Q, et al. Materials Reports, 2022, 36(13), 109 (in Chinese).
龙广成, 杨恺, 程智清, 等. 材料导报, 2022, 36(13), 109.
8 Li Q C, Fan Y F, Chen H. Journal of Southeast University (Natural Science Edition), 2021, 51(3), 480 (in Chinese).
李秋超, 范颖芳, 陈昊.东南大学学报(自然科学版), 2021, 51(3), 480.
9 Habeeb G M. Journal of Engineering and Sustainable Development, 2018, 22(2), 96.
10 Muhd N M S, Hamidah M S, Mohd F A, et al. Construction and Building Materials, 2016, 127, 167.
11 Faried A S, Mostafa S A, Tayeh B A, et al. Journal of Building Engineering, 2021,43, 102569.
12 Feng T T, Jiang J Y, Liu Z Y, et al. Journal of the Chinese Ceramic So-ciety, 2020, 48(8), 1177 (in Chinese).
冯滔滔, 蒋金洋, 刘志勇, 等.硅酸盐学报, 2020, 48(8), 1177.
13 Ding Q J, Pengcheng K Y, Hu J, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(2), 488 (in Chinese).
丁庆军, 彭程康琰, 胡俊, 等.硅酸盐通报, 2019, 38(2), 488.
14 Zhu H Y, Jiang J Y, Li H, et al. Materials Reports, 2020, 34(12), 24029 (in Chinese).
褚洪岩, 蒋金洋, 李荷, 等.材料导报, 2020, 34(12), 24029.
15 Zhao J, Lu X Y. China Concrete, 2019(124), 51 (in Chinese).
赵筠, 路新瀛.混凝土世界, 2019(124), 51.
16 Wen D C, Wei D B, Wu L D, et al. Journal of Building Materials, 2022, 25(7), 693 (in Chinese).
温得成, 魏定邦, 吴来帝, 等. 建筑材料学报, 2022, 25(7), 693.
17 Wang J Y, Guo J Y, Xiao R C, et al. China Civil Engineering Journal, 2017, 50(11), 10 (in Chinese).
王俊颜, 郭君渊, 肖汝诚, 等.土木工程学报, 2017, 50(11), 10.
18 Bian C, Wang J Y, Guo J Y. Construction and Building Materials, 2021, 267, 120927.
19 Tregger N A, Pakula M E, Shan S P. Cement and Concrete Research, 2010, 40(3), 384.
20 Wang J W, An M Z, Liu Y Z, et al. China Railway Science, 2021, 42(2), 19 (in Chinese).
王军伟, 安明喆, 刘亚洲, 等.中国铁道科学, 2021, 42(2), 19.
21 Wu Z M. Multi-investigation on fiber-matrix interfacial bond properties in ultra-high performance concrete. Ph.D. Thesis, Hunan University, China, 2017 (in Chinese).
吴泽媚. 超高性能混凝土中纤维与基体界面粘结性能多尺度研究. 博士学位论文, 湖南大学, 2017.
22 Rong Z D, Jiang G, Sun W, et al. Journal of Hebei University of Techno-logy, 2014, 43(6), 30 (in Chinese).
戎志丹, 姜广, 孙伟, 等.河北工业大学学报, 2014, 43(6), 30.
23 Zhao S, Sun W. Construction and Building Materials, 2014, 63, 150.
[1] 韩照, 张云升, 乔宏霞, 冯琼, 薛翠真, 尚明刚. 基于CT扫描及图像处理技术的机制砂形貌研究[J]. 材料导报, 2023, 37(19): 22060032-6.
[2] 袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
[3] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[4] 马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
[5] 张广田, 刘娟红, 孔丽娟, 吴瑞东. 石英岩型铁尾矿机制砂中石粉的吸附特性及机理[J]. 材料导报, 2021, 35(6): 6071-6077.
[6] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[7] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[8] 于本田, 刘通, 王焕, 李盛, 谢超, 苏磊, 李彦林. 机制砂中片状颗粒对水泥胶砂性能的影响[J]. 材料导报, 2021, 35(14): 14058-14064.
[9] 邓宗才, 赵连志, 连怡红. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
[10] 郭鹏, 冯云霞, 孟献春, 孟建玮, 潘维霖, 高云, 刘洋. 蓄盐融雪除冰剂微观分析及对混合料水稳定性的影响[J]. 材料导报, 2020, 34(6): 6062-6065.
[11] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[12] 徐彬彬, 欧忠文, 罗伟, 刘娜, 袁旺, 付来平. 饱水轻骨料和减缩剂对UHPC水化过程和自收缩的影响[J]. 材料导报, 2020, 34(22): 22065-22069.
[13] 雷蕾, 何晓聪, 高爱凤, 赵得锁. 粘接剂对1420铝锂合金压印接头疲劳性能的影响[J]. 材料导报, 2018, 32(16): 2809-2815.
[14] 张广田,刘娟红,隋宝龙,陈朝阳. 硅质机制砂改性剂的机理研究与应用[J]. 《材料导报》期刊社, 2017, 31(24): 56-62.
[15] 朋改非, 牛旭婧, 成铠. 超高性能混凝土的火灾高温性能研究综述*[J]. CLDB, 2017, 31(23): 17-23.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed