Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22070288-8    https://doi.org/10.11896/cldb.22070288
  无机非金属及其复合材料 |
利用H2O2发泡和碳化养护改善RMFC的固碳、力学和保温隔热性能
刘奎周1,2, 张建仁1,3, 田湘1,3, 黄敦文1,3, 彭晖1,3,*
1 长沙理工大学土木工程学院,长沙 410114
2 湖南大学土木工程学院,长沙 410082
3 长沙理工大学桥梁工程安全控制教育部重点实验室,长沙 410114
Improving Carbon Sequestration, Mechanical Properties and Thermal Insulation of RMFC by Foaming with H2O2 and Carbonization Curing
LIU Kuizhou1,2, ZHANG Jianren1,3, TIAN Xiang1,3, HUANG Dunwen1,3, PENG Hui1,3,*
1 School of Civil Engineering and Architecture, Changsha University of Science and Technology, Changsha 410114, China
2 College of Civil Engineering, Hunan University, Changsha 410082, China
3 Key Laboratory of Safety Control of Bridge Engineering of Ministry of Education, Changsha University of Science and Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 14271KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 开发新型低碳胶凝材料替代高能耗高碳排放的硅酸盐水泥是水泥与建筑行业碳减排的重要途径之一。通过H2O2发泡和CO2养护活性氧化镁水泥(Reactive magnesium oxide cements, RMC),制备了一种可快速大量固碳且具有保温隔热性能的活性氧化镁泡沫混凝土(Reactive magnesium oxide foam concrete, RMFC),并研究得到了各因素对材料发泡、固碳、力学及隔热性能的影响规律及作用机理。考察了水灰比、H2O2掺量和H2O2预热温度对RMC浆体发泡效果的影响规律;研究了孔隙率、养护条件和碳化时间对RMFC碳化行为的作用效果;分析了孔隙率、养护条件与碳化时间对RMFC力学性能和保温隔热性能的作用机理。研究表明:通过适当提高水灰比延长RMC浆体初凝时间、预热H2O2提高其分解速率,可制备得到孔隙率较高的RMFC;提高孔隙率、增加CO2浓度和降低碳化温度可显著提升固碳率,碳化温度不同还导致碳化产物有所不同;降低孔隙率或提高碳化水平可得到强度较高但导热系数较大的RMFC;试验中制备得到了容重635~1 335 kg/m3、抗压?慷?.75~9.1 MPa,导热系数0.32~0.49 W/(m·K)的RMFC。本工作提出的RMFC制备方法具有显著的固碳效果,试验中每吨RMC固定CO2的最大值为0.42 t,以其替代硅酸盐水泥泡沫混凝土可助力水泥与建筑行业实现“碳达峰、碳中和”。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘奎周
张建仁
田湘
黄敦文
彭晖
关键词:  活性氧化镁水泥(RMC)  CO2养护  泡沫混凝土  力学性能  导热系数    
Abstract: Developing new low-carbon cementitious materials to replace high-energy consumption and carbon emission ordinary Portland cement is one of the critical approaches for carbon reduction in the cement and construction industries. In this study, we prepared a rapidly carbon-sequestering and thermally insulating material, reactive magnesium oxide foam concrete (RMFC), by foaming reactive magnesium oxide cement (RMC) with H2O2 and curing with CO2. We investigated the influence of factors such as water-ash ratio, H2O2 dosage, and H2O2 preheating temperature on the foaming behavior of RMC paste. Additionally, we studied the effects of porosity, curing conditions, and carbonation time on the carbonation behavior of RMFC, and analyzed the mechanisms governing the impact of porosity, curing conditions, and carbonation time on the mechanical and thermal insulation properties of RMFC. The results showed that by appropriately increasing the water-ash ratio, we could extend the initial setting time of RMC paste, while preheating H2O2 enhanced its decomposition rate, enabling the production of high-porosity RMFC. Furthermore, increasing porosity, elevating CO2 concentration, and reducing carbonation temperature significantly enhanced the CO2 sequestration rate. Different curing temperatures led to variations in carbonation products. Reducing porosity or increasing the carbonation level resulted in higher strength but higher thermal conductivity in RMFC. Through experimentation, we achieved RMFC with densities ranging from 635 kg/m3 to 1 335 kg/m3, compressive strengths between 3.75 MPa and 9.1 MPa, and thermal conductivities of 0.32 W/(m·K) to 0.49 W/(m·K) after carbonation curing for 12 h to 48 h. The proposed method for RMFC preparation demonstrated a substantial CO2 sequestration effect, with a maximum CO2 sequestration of 0.42 tons per ton of RMC. Replacing ordinary Portland cement foam concrete with RMFC has the potential to contribute to carbon emissions reduction in the cement and construction industries.
Key words:  reactive magnesium oxide cement (RMC)    carbonation curing    foam concrete    mechanical properties    thermal conductivity
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51878068);湖南省杰出青年基金(2017JJ1027);湖南省研究生科研创新项目(QL20210189)
通讯作者:  * 彭晖,长沙理工大学土木工程学院教授、博士研究生导师。1999年湖南大学本科毕业,2002 年湖南大学硕士毕业,2006 年湖南大学博士毕业。目前主要从事预应力FRP增强混凝土结构的力学和耐久性能、高性能无机胶凝材料的合成及结构工程应用、土木工程低碳智能建维关键技术等方面的研究。在Engineering Structures、Cement and Concrete Composites、ASCE Journal of Materials in Civil Engineering等期刊上发表论文80余篇,其中SCI收录20余篇,EI收录40多篇。先后获得国家科技进步二等奖、湖南省科技进步一、二等奖、中国公路学会科学技术二等奖等科技奖励8项,其中主持完成的“基于预应力CFRP的桥梁性能提升技术”获得2016年度中国公路学会科学技术二等奖。Huipeng@csust.edu.cn   
作者简介:  刘奎周,现为长沙理工大学土木工程学院硕士研究生,在彭晖教授的指导下进行研究。目前主要研究领域为低碳建筑材料。
引用本文:    
刘奎周, 张建仁, 田湘, 黄敦文, 彭晖. 利用H2O2发泡和碳化养护改善RMFC的固碳、力学和保温隔热性能[J]. 材料导报, 2023, 37(23): 22070288-8.
LIU Kuizhou, ZHANG Jianren, TIAN Xiang, HUANG Dunwen, PENG Hui. Improving Carbon Sequestration, Mechanical Properties and Thermal Insulation of RMFC by Foaming with H2O2 and Carbonization Curing. Materials Reports, 2023, 37(23): 22070288-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070288  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22070288
1 Benhelal E, Zahedi G, Shamsaei E, et al. Journal of Cleaner Production, 2013, 51(1), 142.
2 Ruan S, Unluer C. Journal of Cleaner Production, 2016, 137(20), 258.
3 Dung N T, Unluer C. Cement and Concrete Research, 2019, 118, 92.
4 Silva P D, Bucea L, Sirivivatnanon V. Cement and Concrete Research, 2009, 39(5), 460.
5 Thomas J J, Musso S, Prestini I. Journal of the American Ceramic Society, 2014, 97(1), 275.
6 Sonat C, Lim C H, Liska M, et al. Construction and Building Materials, 2017, 157, 172.
7 Gartner E, Sui T. Cement and Concrete Research, 2018, 114, 27.
8 Unluer C, Al-Tabbaa A. Cement and Concrete Research, 2014, 59, 55.
9 Dung N T, Unluer C. Construction and Building Materials, 2017, 143, 71.
10 Dung N T, Unluer C. Journal of Materials in Civil Engineering, 2018, 30(12), 04018320.
11 Dung N T, Hay R, Lesimple A, et al. Cement and Concrete Composites, 2021, 115, 103826.
12 Vandeperre L J, Al-Tabbaa A. Advances in Cement Research, 2007, 19(2), 67.
13 Dung N T, Unluer C. Cement and Concrete Research, 2018, 103, 160.
14 Ruan S, Unluer C. Construction and Building Materials, 2017, 142, 221.
15 Yu J L, Wang P X, Yan X Q, et al. Chemical Engineering, 2014(6),54(in Chinese).
喻健良, 王培昕, 闫兴清,等. 化学工程, 2014(6), 54.
16 Shi S Q, Zhou H M. Chemical World, 1997, 38(3), 128(in Chinese).
石双群, 周红敏.化学世界, 1997, 38(3), 128.
17 Zhong X, Li L, Jiang Y, et al. Construction and Building Materials, 2021, 302, 124158.
18 Humbert P S, Castro-Gomes J P, Savastano H. Construction and Building Materials, 2019, 210, 413.
19 Jauffret G, Morrison J, Glasser F. Journal of Thermal Analysis and Calorimetry, 2015, 122(2), 601.
20 Purwajanti S, Zhou L, Nor Y A, et al. ACS Applied Materials & Interfaces, 2015, 7(38), 21278.
21 Dung N T, Simple A, Hay R, et al. Cement and Concrete Research, 2019, 125, 105894.
22 Mo L, Zhang F, Deng M, et al. Cement and Concrete Composites, 2016, 70, 78.
23 Hay R, Celik K. Journal of Cleaner Production, 2020, 248, 119282.
24 Liu J, Qi W, Liu R Q, et al. Concrete, 2016(5), 4 (in Chinese).
刘军, 齐玮, 刘润清,等. 混凝土, 2016(5), 4.
25 Kearsley E P, Wainwright P J. Cement and Concrete Research, 2002, 32(2), 233.
26 Ruan S, Unluer C. Cement and Concrete Composites, 2017, 80, 104.
27 Hu X P, Li X Y, Han B Q, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(11), 6 (in Chinese).
胡新萍, 李翔宇, 韩保清,等.硅酸盐通报, 2014, 33(11), 6.
28 Guan L Y. Research on the air-void system characterization and regulation and properties of foamed concrete. Master's Thesis, Wuhan University of Technology China, 2014(in Chinese).
关凌岳. 泡沫混凝土孔结构表征与调控方法及其性能研究.硕士学位论文,武汉理工大学, 2014.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed