Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22090016-7    https://doi.org/10.11896/cldb.22090016
  金属与金属基复合材料 |
预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响
郭耀旗1,2, 唐敏1,2,3, 马红林1, 魏文猴1, 王林志1, 范树迁1, 张祺1,*
1 中国科学院重庆绿色智能技术研究院,重庆 400714
2 中国科学院大学重庆学院,重庆 400714
3 重庆理工大学材料科学与工程学院,重庆 400054
Effect of Preheating Temperature on Mechanical Properties of 30%SiCp/AlSi10Mg Composites Fabricated by Selective Laser Melting
GUO Yaoqi1,2, TANG Min1,2,3, MA Honglin1, WEI Wenhou1, WANG Linzhi1, FAN Shuqian1, ZHANG Qi1,*
1 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
2 Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
3 School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
下载:  全 文 ( PDF ) ( 37387KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基板常温工况下激光选区熔化成形中等体积分数SiCp/Al复合材料存在孔洞、裂纹等冶金缺陷,从而导致成形零件致密度低、力学性能差等问题。首先研究了固定优化成形工艺参数时,基板预热温度(200~400 ℃)对45 μm的30%(质量分数,下同) SiCp/AlSi10Mg成形零件表观致密度和力学性能的影响;进一步提高SiCp质量分数至50%,再次评价了上述基板预热温度对成形性能的影响。结果表明,当SiCp质量分数为30%时,升高基板预热温度可以减少成形零件的孔洞和裂纹,成形零件的表观致密度及力学性能显著提高;当基板预热至400 ℃时,成形零件表观致密度最高达到97.98%,与此同时极限抗压强度和极限抗拉强度分别为578 MPa和56 MPa;随着SiCp质量分数进一步增加至50%,基板预热温度对成形零件致密化和力学性能的强化效果逐步减弱。本研究证明高温预热基板能够有效抑制激光选区熔化成形中等体积分数SiCp/Al复合材料的冶金缺陷,为增材制造SiCp/Al复合材料提供了工程应用解决方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭耀旗
唐敏
马红林
魏文猴
王林志
范树迁
张祺
关键词:  中等体积分数  SiCp/Al复合材料  激光选区熔化  基板预热  致密度  力学性能    
Abstract: Selective laser melting of medium volume fraction SiCp/Al composites under ambient temperature substrate conditions suffers from metallurgical defects such as holes and cracks, which in turn lead to low densities and poor mechanical properties of the fabricated parts. The influence of a substrate preheating temperature (200—400 ℃) on the apparent density and mechanical properties of fabricated 30%(mass fraction) SiCp/AlSi10Mg (45 μm) parts with fixed and optimized process parameters was investigated at first. As the mass fraction of SiCp was increased to 50%, the influence of the above mentioned substrate preheating temperature on the properties of fabricated composites was evaluated again. The results show that, when the mass fraction of SiCp is 30%, an increased preheating temperature of a substrate can reduce the holes and cracks of a formed parts, the apparent densities and mechanical properties of the fabricated parts are significantly improved; when the substrate is preheated to 400 ℃, the maximum apparent densities of fabricated parts can reach 97.98%, while the ultimate compressive strength and ultimate tensile strength are 578 MPa and 56 MPa, respectively. The effect of substrate preheating on the densification and strengthening of mechanical properties of fabricated parts gradually decreases as the mass fraction of SiCp was increased to 50%. This study proves that a high temperature preheating of the substrate is effective in suppressing metallurgical defects of medium volume fraction SiCp/Al composites fabricated with selective laser mel-ting, providing an engineering solution for additive manufacturing of SiCp/Al composites.
Key words:  medium volume fraction    SiCp/Al composite    selective laser melting    preheated substrate    density    mechanical property
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TG148  
基金资助: 国家自然科学基金(51675507;51901220);重庆市自然科学基金(cstc2020jcyj-msxmX0787;cstc2021jcyj-msxmX0435);滨州市渤海高等研究院;中国科学院青年创新促进会
通讯作者:  *张祺,中国科学院重庆绿色智能技术研究院副研究员、硕士研究生导师。2006年6月中国科学技术大学机械设计制造及其自动化专业本科毕业,2011年6月法国萨瓦大学力学与材料专业博士毕业,2013年6月中国科学技术大学测试计量技术及仪器专业博士毕业。从事复合材料增材制造技术以及增材制造质量监控方面的研究工作,发表SCI论文30余篇,包括Materials & Design、Scripta Materialia、Journal of Alloys and Compounds、Journal of Manufacturing Processes等,获授权中国发明专利20余项。zhangqi@cigit.ac.cn   
作者简介:  郭耀旗,2020年6月于合肥工业大学获得工学学士学位,主要研究方向为陶瓷金属复合材料的激光增材制造技术。
引用本文:    
郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
GUO Yaoqi, TANG Min, MA Honglin, WEI Wenhou, WANG Linzhi, FAN Shuqian, ZHANG Qi. Effect of Preheating Temperature on Mechanical Properties of 30%SiCp/AlSi10Mg Composites Fabricated by Selective Laser Melting. Materials Reports, 2024, 38(3): 22090016-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090016  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22090016
1 Dong C G, Wang R C, Peng C Q, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(11), 3161 (in Chinese).
董翠鸽, 王日初, 彭超群, 等. 中国有色金属学报, 2021, 31(11), 3161.
2 Zhou Y, Zhang D Y, Wang W D, et al. Aeronautical Manufacturing Technology, 2018, 61(10), 6(in Chinese).
周岩, 张冬云, 王卫东, 等. 航空制造技术, 2018, 61(10), 6.
3 Cheng S Y, Cao Q, Bao J X, et al. Chinese Optics, 2019, 12(5), 1064(in Chinese).
程思扬, 曹琪, 包建勋, 等. 中国光学, 2019, 12(5), 1064.
4 Li M, Wang A Q, Xie J P, et al. Powder Metallurgy Industry, 2015, 25(3), 55(in Chinese).
李敏, 王爱琴, 谢敬佩, 等. 粉末冶金工业, 2015, 25(3), 55.
5 Ke L D, Xue G, Zhu H H, et al. Aerospace Shanghai, 2019, 36(2), 118(in Chinese).
柯林达, 薛刚, 朱海红, 等. 上海航天, 2019, 36(2), 118.
6 Wang M, Song B, Wei Q, et al. Journal of Alloys and Compounds, 2019, 810, 151926.
7 Zhou Y. Investigation on process optimization and organization analysis of SiC particles reinforced aluminum matrix composites by selective laser melting. Master's Thesis, Beijing University of Technology, China, 2018(in Chinese).
周岩. 选区激光熔化成形SiC颗粒增强铝基复合材料工艺优化与组织分析. 硕士学位论文, 北京工业大学, 2018.
8 Wang W D. Study on the process and strengthening mechanism of SiC particle reinforced aluminum matrix composites by selective laser melting. Master's Thesis. Beijing University of Technology, China, 2019 (in Chinese).
王卫东. 激光选区熔化成形SiC颗粒增强铝基复合材料工艺与强化机理研究. 硕士学位论文, 北京工业大学, 2019.
9 Xue G, Ke L D, Zhu H H, et al. Materials Science and Engineering, 2019, 764, 138155.1.
10 Chang F, Gu D D, Dai D H, et al. Surface & Coatings Technology, 2015, 272, 15.
11 Xue G, Ke L D, Liao H L, et al. Journal of Alloys and Compounds, 2020, 845, 156260.
12 Ghosh S K, Saha P. Materials & Design, 2011, 32(1), 139.
13 Tai H L. Microstructure and properties of SiCp/AlSi10Mg composites by selective laser melting. Master's Thesis, Xi'an Technological University, China, 2020(in Chinese).
邰鹤立. 选区激光熔化SiCp/AlSi10Mg复合材料的组织及性能研究. 硕士学位论文, 西安工业大学, 2020.
14 Xue G, Zhu H H, Ke L D, et al. Hot Working Technology, 2021, 50(10), 62(in Chinese).
薛刚, 朱海红, 柯林达, 等. 热加工工艺, 2021, 50(10), 62.
15 Xie H B, Zhang J L, Yuan G Q, et al. Refractories, 2021, 55(5), 7(in Chinese).
解厚波, 张家莲, 苑高千, 等. 耐火材料, 2021, 55(5), 7.
16 Uddin S Z, Murr L E, Terrazas C A, et al. Additive Manufacturing, 2018, 30297, 5.
17 Martin M, Daniel K, Libor P, et al. Journal of Manufacturing Processes, 2022, 73, 924.
18 Mertens R, Dadbakhsh S, Humbeeck J V, et al. Procedia CIRP, 2018, 74, 5.
19 Zhang B C, Dembinski L, Coddet C. Materials Science & Engineering A, 2013, 584, 21.
20 Zhang D Y, Yi D H, Wu X P, et al. Journal of Alloys and Compounds, 2022, 894, 15.
21 Wang W Z, Jian Z Y. Journal of Xi'an Technological University, 2021, 41(1), 60(in Chinese).
王渭中, 坚增运. 西安工业大学学报, 2021, 41(1), 60.
22 Wang D. Study on the fabrication properties and process of stainless steel parts by selective laser melting. Ph. D. Thesis, South China University of Technology, China, 2011(in Chinese).
王迪. 选区激光熔化成型不锈钢零件特性与工艺研究. 博士学位论文, 华南理工大学, 2011.
23 Gu D D. Direct laser sintering of Cu-based metal powder: key processes and basic mechanisms. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2007(in Chinese).
顾冬冬. 激光烧结铜基合金的关键工艺及基础研究. 博士学位论文, 南京航空航天大学, 2007.
24 Liu R C. The study on surface roughness of metal parts fabricated by selective laser melting and the application on non-assembly mechanisms. Master's Thesis, South China University of Technology, China, 2014(in Chinese).
刘睿诚. 激光选区熔化成型零件表面粗糙度研究及在免组装机构中的应用. 硕士学位论文, 华南理工大学, 2014.
25 Gu D D, Wang H Q, Chang F, et al. Physics Procedia, 2014, 56, 108.
26 Wang R, Wang Y L, Jiang F L, et al. Surface Technology, 2022, 51(3), 342(in Chinese).
王冉, 王玉玲, 姜芙林, 等. 表面技术, 2022, 51(3), 342.
27 Zhang W Q, Zhu H H, Hu Z H, et al. Acta Metallurgica Sinica, 2017, 53(8), 918(in Chinese).
张文奇, 朱海红, 胡志恒, 等. 金属学报, 2017, 53(8), 918.
28 Wang W, Ajersch F, Löfvander J. Materials Science and Engineering A, 1994, 187(1), 65.
29 Gao L H, Sun W. Journal of Armored Forces, 2004(4), 5(in Chinese).
高连华, 孙伟. 装甲兵工程学院学报, 2004(4), 5.
30 Wu T. Research on microstructure and mechanical properties of sic particles reinforced aluminum matrix composites. Ph. D. Thesis, Jilin University, China, 2021(in Chinese).
吴彤. SiC颗粒增强铝基复合材料的组织与力学性能研究. 博士学位论文, 吉林大学, 2021.
31 Xiu Z Y, Yang W S, Dong R H, et al. Journal of Materials Science & Technology, 2015, 31(9), 930.
[1] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[2] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[3] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[4] 朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
[5] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[6] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[7] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[8] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[9] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[10] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[11] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[12] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[13] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[14] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[15] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed