Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22080097-5    https://doi.org/10.11896/cldb.22080097
  金属与金属基复合材料 |
影响P91耐热钢焊缝金属冲击韧性的因素分析
李文清1, 曹睿1,*, 杨飞2, 徐晓龙2, 毛兴贵2, 蒋勇2, 闫英杰1
1 兰州理工大学材料科学与工程学院,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 四川大西洋焊接材料股份有限公司,四川 自贡 643000
Analysis of Factors Affecting the Impact Toughness of P91 Heat-resistant Steel Weld Metal
LI Wenqing1, CAO Rui1,*, YANG Fei2, XU Xionglong2, MAO Xinggui2, JIANG Yong2, YAN Yingjie1
1 The State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Sichuan Atlantic Welding Materials Co., Ltd., Zigong 643000, Sichuan, China
下载:  全 文 ( PDF ) ( 23260KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用扫描电镜、光学显微镜、X射线衍射仪、电解萃取实验等研究了P91耐热钢焊缝金属冲击韧性不稳定的原因。结果表明,焊缝金属的组织为铁素体组织,在铁素体基体与晶界处分布着大量的析出相。析出相主要为M23C6型碳化物和氧化物夹杂,其中晶界处聚集的M23C6是影响焊缝金属冲击韧性的主要原因。通过对不同冲击韧性值的试样晶界处碳化物的面积分数统计发现,M23C6面积分数的增加导致焊缝金属的冲击韧性下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文清
曹睿
杨飞
徐晓龙
毛兴贵
蒋勇
闫英杰
关键词:  P91耐热钢  冲击韧性  M23C6碳化物    
Abstract: The reasons for the instability of the impact toughness of P91 heat-resistant steel weld metal were investigated by scanning electron microscope, optical microscope, X-ray diffraction and electrolytic extraction experiment. The results show that the microstructure of the weld metal is mainly composed of ferrite and a large number of precipitates distributed at the ferrite matrix and grain boundary. The precipitates mainly consist of M23C6 carbide and oxide inclusions, among which aggregated M23C6 is the main reason affecting the impact toughness of the weld metal. According to the statistics of the area fraction of carbides at grain boundaries for specimens with different impact toughness values, it is found that the increase of M23C6 area fraction leads to the decrease of the impact toughness of the weld metal.
Key words:  P91 heat-resistant steel    impact toughness    M23C6 carbide
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TG441  
基金资助: 国家自然科学基金(52175325;51961024;52071170);甘肃省教育厅“双一流”科研重点项目(GSSYLXM-03)
通讯作者:  *曹睿,博士,兰州理工大学教授、博士研究生导师。获得甘肃省飞天学者和四川省天府学者。2003年6月兰州理工大学材料科学与工程学院参加工作至今。主要从事新材料和异种材料的焊接性、强韧性、腐蚀、变形、损伤及断裂行为研究等科研工作。发表SCI检索论文90余篇,发表中文核心期刊论文120余篇,完成著作2部。完成国家自然科学基金项目、甘肃省科研项目以及企业合作项目40余项。caorui@lut.edu.cn   
作者简介:  李文清,2020年6月毕业于兰州工业学院,获得工学学士学位,现为兰州理工大学材料科学与工程学院硕士研究生。在曹睿老师的指导下进行课题研究,目前研究领域主要为焊缝金属强韧化的研究。
引用本文:    
李文清, 曹睿, 杨飞, 徐晓龙, 毛兴贵, 蒋勇, 闫英杰. 影响P91耐热钢焊缝金属冲击韧性的因素分析[J]. 材料导报, 2024, 38(3): 22080097-5.
LI Wenqing, CAO Rui, YANG Fei, XU Xionglong, MAO Xinggui, JIANG Yong, YAN Yingjie. Analysis of Factors Affecting the Impact Toughness of P91 Heat-resistant Steel Weld Metal. Materials Reports, 2024, 38(3): 22080097-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080097  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22080097
1 Zhang X, Zeng Y, Cai W, et al. Materials Science and Engineering A, 2018, 728(13), 63.
2 Pandey C, Giri A, Mahapatra M M. Materials Science and Engineering A, 2016, 664(10), 58.
3 Pandey C, Giri A, Mahapatra M M. Materials Science and Engineering A, 2016, 657(7), 173.
4 Mahapatra M M. Journal of Materials Engineering and Performance, 2016, 25(6), 2195.
5 Soundararajan M, Kamaraj M, Arivazhagan B. Journal of Materials Research and Technology, 2019, 9(2), 2223.
6 Abe F, Taneike M, Sawada K. International Journal of Pressure Vessels and Piping, 2007, 84(2), 3.
7 Khajuria A, Akhtar M, Bedi R, et al. International Journal of Pressure Vessels and Piping, 2020, 188, 104246.
8 Zheng Y, Wang F, Garrison W M, et al. Metallurgical and Materials Transactions A, 2018, 49, 1.
9 Zhang S, Melfi T, Narayanan B K. Science and Technology of Welding and Joining, 2016, 21(2), 147.
10 Arivazhagan B, Prabhu R. Journal of Materials Engineering and Perfor-mance, 2009, 18(8), 999.
11 Zhang J B, Liu F, Fan D, et al. Transactions of Materials and Heat Treatment, 2017, 38(3), 108(in Chinese).
张建斌, 刘帆, 樊丁, 等. 材料热处理学报, 2017, 38(3), 108.
12 Pandey C, Mahapatra M M, Kumar P, et al. Journal of Alloys and Compounds, 2018, 743, 332.
13 Arivazhagan B, Vasudevan M, Kamaraj M. Metals and Materials International, 2015, 21(3), 538.
14 Hurtado-Nore A C, Danón C A, Luppo M I, et al. Procedia Materials Science, 2015, 8, 1089.
15 Pandey C, Mahapatra M M, Kumar P, et al. Archives of Civil and Mechanical Engineering, 2019, 19(2), 297.
16 Pandey C, Mahapatra M M, Kumar P. Materials Science and Engineering A, 2018, 731, 249.
17 Yin F S, Tian L Q, Xue B, et al. Metallurgical and Materials Transactions A, 2012, 43(7), 2203.
18 Yu X, Babu S S, Terasaki H, et al. Acta Materialia, 2013, 61(6), 2194.
19 Li J R, Zhang C L, Jiang B, et al. Journal of Alloys and Compounds, 2016, 685(15), 248.
20 Mishnev R, Dudova N, Dudko V, et al. Materials Science and Enginee-ring A, 2018, 730, 1.
[1] 韩成, 曹睿. 硼在钢中的作用及表征方式[J]. 材料导报, 2022, 36(Z1): 21080164-4.
[2] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[3] 宋婕, 常英珂, 吴瑞德, 李琳, 张程煜. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 20120015-5.
[4] 董万龙, 曹睿, 蒋勇, 杨飞, 黄义芳, 徐晓龙, 陈剑虹. Cr-Mo-V耐热钢焊条电弧焊焊缝金属低温冲击韧性研究[J]. 材料导报, 2022, 36(15): 20120001-5.
[5] 陆由付, 王朝辉, 王学成, 樊振通, 肖绪荡. 桥面现浇混凝土细微裂缝用环氧灌浆材料的环境适应性[J]. 材料导报, 2022, 36(1): 20090252-7.
[6] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[7] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[8] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[9] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[10] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[11] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[12] 傅定发,冷宇,高文理. 微合金元素Nb对低碳铸钢强度和冲击韧性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 237-242.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed