Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22090074-5    https://doi.org/10.11896/cldb.22090074
  无机非金属及其复合材料 |
基于十水硫酸钠的个体防护材料的制备及性能
赵荣1, 韩子夜1, 吴飞翔1, 刘太奇1,*, 李谭秋2
1 北京石油化工学院环境材料研究中心,北京 102617
2 中国航天科研训练中心,北京 100094
Preparation and Performance of Personal Protective Materials Based on Sodium Sulfate Decahydrate
ZHAO Rong1, HAN Ziye1, WU Feixiang1, LIU Taiqi1,*, LI Tanqiu2
1 Research Center of Ecomaterial, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2 China Astronaut Research and Training Centre, Beijing 100094, China
下载:  全 文 ( PDF ) ( 8115KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新冠病毒的爆发使得人们对医用防护服的性能提出了更高的要求:隔离病毒并确保密闭空间人体舒适。人们试图用基于十水硫酸钠的相变材料来调节个体防护服的温度,但是其配方中含有危险品硼酸,并存在相分离、过冷等现象,限制了其实际应用。采用纳米二氧化硅和硼砂两种不同类型的成核剂,成功制备出不含硼酸的过冷度低、热性能稳定、可用于调节人体温度的个体防护材料,并研究了用DSC测试该材料相变潜热的方法。实验结果表明,纳米二氧化硅有效降低了十水硫酸钠的过冷度,个体防护材料的潜热足以用于制造防护服。当纳米二氧化硅添加量为3%时,个体防护材料的潜热为179 J/g,相变温度为16 ℃,过冷度仅为0.7 ℃;DSC测试该防护材料热性能的最佳条件为:样品质量为30 mg,制样温度维持在0 ℃,氮气压力为0.1 MPa。使用该防护材料制备的个体防护背心测试结果表明:防护背心4 h内可保持在26 ℃范围中,6 h保持在29 ℃范围内。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵荣
韩子夜
吴飞翔
刘太奇
李谭秋
关键词:  十水硫酸钠  个体防护  相变材料  成核剂  二氧化硅    
Abstract: The outbreak of the new crown virus has put forward the higher requirements to the performance of medical protective clothing, which can isolate the virus and ensure human comfort in confined spaces. A mixture of sodium sulfate decahydrate has been tried to adjust the temperature of a person with the personal protective clothing. However, it cannot be put into application because of the dangerous boric acid and the phenomena such as phase separation and supercooling. In this work, the personal protective material with low subcooling degree and stable thermal performance was successfully prepared by adding two different types of new treating agents, the nano-silica and borax. And it can be used to adjust human temperature without boric acid. The method of testing the latent heat of personal protective material with DSC was also studied. Experimental results show that nano-silica can effectively reduce the supercooling degree of sodium sulfate decahydrate, and the latent heat of the personal protective material is enough for the manufacture of protection clothes. With the addition of silica as 3%, the latent heat of the personal protective material is 179 J·g-1 and the phase change temperature of it is 16 ℃ while the super cooling degree is only 0.7 ℃. The optimal conditions of DSC to test the enthalpy of the material are as follows: sample mass of 30 mg, preparation temperature at 0 ℃, pressure of the nitrogen protective gas 0.1 MPa. The test results of the personal protective vest prepared by using this material show that the protective vest can be kept in the range of 26 ℃ for 4 h and 29 ℃ for 6 h.
Key words:  sodium sulfate decahydrate    personal protection    phase change material    nucleating agent    silicon dioxide
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TB34  
基金资助: 北京市创新平台建设-北京石油化工学院材料学创新平台建设(PXM019-014222-000052)
通讯作者:  *刘太奇,北京石油化工学院教授、博士研究生导师,研究中心主任,北京化工大学博士研究生导师。主要从事纳米环境净化材料、航天材料及节能材料研究。发表论文80余篇,其中SCI、EI收录60余篇,主编《纳米技术应用丛书》之《纳米空气净化技术》(化工出版社)。liutaiqi@bipt.edu.cn   
作者简介:  赵荣,2020年6月本科毕业于太原工业学院无机非金属材料工程专业,现为北京石油化工学院硕士研究生,在刘太奇教授的指导下进行研究。目前主要研究方向为节能材料。
引用本文:    
赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
ZHAO Rong, HAN Ziye, WU Feixiang, LIU Taiqi, LI Tanqiu. Preparation and Performance of Personal Protective Materials Based on Sodium Sulfate Decahydrate. Materials Reports, 2024, 38(3): 22090074-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090074  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22090074
1 Xie Z X, Qin Y C, Yang L, et al. Science of the Total Environment, 2020, 744, 140929.
2 Yang L, Liu H, Ding S, et al. Advanced Fiber Materials, 2020, 2(3), 140.
3 Zhu H Y, Yang X L, Lyu H. Personal Protective Equipment in China, 2014(5), 15 (in Chinese).
朱宏勇, 杨新领, 吕晖. 中国个体防护装备, 2014(5), 15.
4 Zhang C K, Chen Y, Liang G J, et al. Journal of Central South University, 2021, 28(12), 3654.
5 Li W, Lang Y, Liu C, et al. Building and Environment, 2022, 222, 109390.
6 Tokizawa K, Son S Y, Oka T, et al. Industrial Health, 2020, 58(1), 63.
7 Liang Y H, Li W L, Zhu J Y, et al. Wool Spinning Technology, 2022, 50(5), 97.
8 Jaguemont J, Omar N, Bossche P, et al. Applied Thermal Engineering, 2018, 132, 308.
9 Tang Y, Xu Y T, He C, et al. The Canadian Journal of Chemical Engineering, 2022, 100(5), 949.
10 Alam M, Zou P X W, Sanjayan J, et al. Applied Energy, 2019, 238, 1582.
11 Zhao M, Gao C, Wang F, et al. Textile Research Journal, 2012, 83(4), 418.
12 Udayraj, Prabal T, Apurba D, et al. International Journal of Thermal Sciences, 2016, 106, 32.
13 Lin Y, Alva G, Fang G. Energy, 2018, 165, 685.
14 周梦颖, 李宾, 梁国治, 等. 中国专利, CN201020136669. 0, 2011.
15 朱颖心, 张寅平, 周翔, 等. 中国专利, CN200410009720. 0, 2006.
16 Lu Y, Liu Y L, Shi S L, et al. China Safety Science Journal, 2020, 30(8), 171 (in Chinese).
鲁义, 刘艺伦, 施式亮, 等. 中国安全科学学报, 2020, 30(8), 171.
17 Kumar N, Hirschey J, Laclair T J, et al. Journal of Energy Storage, 2019, 24, 100794.
18 Zheng M, Peng X, Liu J, et al. International Journal of Energy Research, 2021, 45(5), 7129.
19 Goswami M, Kumar N, Li Y, et al. Journal of Applied Physics, 2021, 129(24), 245109.
20 Beaupere N, Soupremanien U, Zalewski L. Thermochimica Acta, 2018, 670, 184.
21 Wen Y H, Zhang G Z, Wang Z G, et al. Journal of Beijing Institute of Technology, 1999(6), 778 (in Chinese).
文越华, 张公正, 王正刚, 等. 北京理工大学学报, 1999(6), 778.
22 Zhang J, Wang S S, Zhang S D, et al. The Journal of Physical Chemistry C, 2011, 115(41), 20061.
23 Haneen H, Nesreen G, Djamel O, et al. International Journal of Thermal Sciences, 2016, 102, 154.
24 Hou P, Mao J, Chen F, et al. Materials (Basel), 2018, 11(11), 2230.
25 Li M, Lin Z, Sun Y, et al. Renewable Energy, 2020, 157, 670.
26 Wang F, Wang J P, Wang X C, et al. Journal of Cangzhou Normal University, 2022, 38(1), 5 (in Chinese).
王凡, 王建平, 王学晨, 等. 沧州师范学院学报, 2022, 38(1), 5.
27 Li L, Yu H, Wang X, et al. Energy & Buildings, 2016, 130(10), 388.
28 Tittelein P, Gibout S, Franquet E, et al. Applied Energy, 2015, 140(15), 269.
29 Wang X, Fang J H, Liu P. et al. Journal of Functional Materials, 2019, 50(2), 2070(in Chinese).
王鑫, 方建华, 刘坪, 等. 功能材料, 2019, 50(2), 2070.
30 Chen J, Lu Q, Wu D, et al. Industrial & Engineering Chemistry Research, 2016, 55(18), 5279.
31 Dong X, Mao J, Geng S, et al. Journal of Thermal Analysis and Calori-metry, 2021, 143(6), 3923.
32 Ni T, Yu H N, Ping H, et al. Journal of Thermal Analysis and Calorimetry, 2022, 147(13), 7077.
33 Wan X, Wang F, Udyraj. International Journal of Heat & Mass Transfer, 2018, 126, 636.
34 Tang T, Zhang W L, Gao N, et al. Journal of Functional Materials, 2022, 53(9), 9035(in Chinese).
唐婷, 张伟丽, 高宁, 等. 功能材料, 2022, 53(9), 9035.
35 Li B, Xiong Y X, Wu Y T, et al. Journal of Solar Energy, 2017, 38(10), 2756.
36 Yang Y, Stapleton J, Diane B T, et al. Applied Thermal Engineering, 2012, 47(5), 18.
37 Sun W J, Xu W T, Dong Q L. Anhui Chemical Industry, 2022, 48(3), 45 (in Chinese).
孙文娟, 许雯婷, 董清丽. 安徽化工, 2022, 48(3), 45.
38 Ke Y, Zhou W. Fashion Academy, 2021, 6(1), 1 (in Chinese).
柯莹, 周文. 服装学报, 2021, 6(1), 1.
39 Liu Z, Yu Z, Yang T, et al. Building and Environment, 2018, 144, 281.
40 Mitchell D, Wyndham C H, Atkins A R, et al. Pflügers Archiv: European Journal of Physiology, 1968, 303(4), 324.
41 Ni X, Yao T, Zhang Y, et al. Materials. 2020, 13(8), 1801.
42 Liang Y H, Li W L, Zhu J Y, et al. Wool Textile Journal, 2022, 50(5), 97 (in Chinese).
梁永辉, 李为林, 朱佳音, 等. 毛纺科技, 2022, 50(5), 97.
[1] 李权威, 刘乐乐, 赵丕琪, 于有良, 邵明军, 芦令超. 氟硅树脂基超疏水涂层的组成设计及性能评价[J]. 材料导报, 2023, 37(9): 21090111-7.
[2] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[3] 辜敏, 吴亚珍. 阴极直接制备铜氧化物-SiO2复合薄膜及其电化学形成机理[J]. 材料导报, 2023, 37(5): 21030296-6.
[4] 曾关跃, 高专, 熊玉竹. 多壁碳纳米管负载银/微晶纤维素定型复合相变材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22040102-6.
[5] 唐昭敏, 江舒婷, 王郁东, 唐婉兰, 舒娟, 张骥阳, 何浩洋, 陈孔军. 负载过氧化铜的介孔二氧化硅纳米粒子协同化学动力学疗法和化疗联合治疗肿瘤[J]. 材料导报, 2023, 37(21): 22050131-5.
[6] 方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 22030005-7.
[7] 朱建平, 张素娟, 高飞, 张文艳. CNTs@SiO2核壳结构纳米线对水泥力学性能及微观结构的影响[J]. 材料导报, 2023, 37(16): 22010225-6.
[8] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[9] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[10] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[11] 李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
[12] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[13] 赵明媚, 张进秋, 彭志召, 张建, 李欣. 剪切增稠液体理论基础和工程应用进展概述[J]. 材料导报, 2022, 36(9): 20070135-8.
[14] 张东尧, 白开皓, 李传常. 复合相变织物的制备及应用[J]. 材料导报, 2022, 36(8): 20080153-6.
[15] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed