Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22090003-6    https://doi.org/10.11896/cldb.22090003
  金属与金属基复合材料 |
Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能
陈恩光1, 苏新清1,*, 薛松柏1, 陈旭东2, 傅仁利1, 张笑天1, 程波1, 王长虹3, 王明伟3
1 南京航空航天大学材料科学与技术学院,南京 211106
2 上海无线电设备研究所,上海 200090
3 中国电子科技集团公司第四十九研究所,哈尔滨 150000
Microstructure and Properties of GH3128/Al2O3 Joint Brazed via Reactive Air Brazing with Ag-CuO-NiO-LiAlSiO4 Composite Filler
CHEN Enguang1, SU Xinqing1,*, XUE Songbai1, CHEN Xudong2, FU Renli1, ZHANG Xiaotian1, CHENG Bo1, WANG Changhong3, WANG Mingwei3
1 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2 Shanghai Radio Equipment Research Institute, Shanghai 200090, China
3 The 49th Institute of China Electronics Technology Group Corporation, Harbin 150000, China
下载:  全 文 ( PDF ) ( 13009KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Ag-CuO-NiO-LiAlSiO4复合钎料对GH3128高温合金与Al2O3陶瓷进行空气反应钎焊(RAB)连接,研究了NiO和LiAlSiO4添加量对钎焊接头显微结构和力学性能的影响,分析了接头的界面微观结构及其形成机制。结果表明,钎焊过程中,GH3128合金表面生成了包括CuCrO4内氧化层和NiO外氧化层的复合氧化反应层,Al2O3陶瓷表面生成了以CuAl2O4为主要成分的界面层。NiO的添加明显改善了复合钎料在合金侧的润湿性,而锂霞石(LiAlSiO4)的添加减小了钎缝与母材间的热失配,极大地改善了键合接头的连接性能。最终,使用含0.3%NiO(质量分数)和4%LiAlSiO4(质量分数)的Ag-10%CuO复合钎料钎焊GH3128合金和Al2O3陶瓷,获得了61.8 MPa的最大剪切强度。此时,接头界面结构为GH3128/CuCrO4+CrNi3+NiO+CuO/Ag+CuO+LiAlSiO4/CuAl2O4/Al2O3
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈恩光
苏新清
薛松柏
陈旭东
傅仁利
张笑天
程波
王长虹
王明伟
关键词:  空气反应钎焊  氧化铝陶瓷  GH3128合金  复合钎料  界面组织  力学性能    
Abstract: Reactive air brazing(RAB) of Al2O3 ceramic and GH3128 alloy was successfully achieved by using Ag-CuO-NiO-LiAlSiO4 composite filler reinforced by NiO and LiAlSiO4 particles. The effects of NiO and LiAlSiO4 content on the microstructure and the mechanical properties of GH3128/Al2O3 joint were investigated. The interface microstructure and the formation mechanism of the brazed joint were analyzed and discussed either. The results show that a composite oxidation reaction layer including CuCrO4 inner oxide layer and NiO outer oxide layer is formed on the surface of GH3128 alloy, and the interfacial layer with CuAl2O4 as the main component is formed on the surface of Al2O3 ceramic in the brazing process. The addition of NiO improves the wettability of the composite solder. Meanwhile, the addition of LiAlSiO4 reduces the coefficient of thermal expansion of the composite filler metal, the filler metal with low coefficient of thermal expansion can reduce the residual stress of the brazed joint, which greatly improve the performance of the joints. The shear strength of the joint reaches the maximum (61.8 MPa) when Ag-10%CuO composite filler metal containing 0.3%NiO(mass fraction) and 4%LiAlSiO4(mass fraction) is used. The typical interfacial microstructure of the joint is GH3128/CuCrO4+CrNi3+NiO+CuO/Ag+CuO+LiAlSiO4/CuAl2O4/Al2O3.
Key words:  reactive air brazing    aluminium oxide ceramic    GH3128 alloy    composite filler    interfacial microstructure    mechanical property
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG454  
通讯作者:  *苏新清,南京航空航天大学材料科学与技术学院副教授、硕士研究生导师,主要研究领域为聚合物基复合材料的高性能化,金属与陶瓷材料的焊接以及MLCC陶瓷浆料的稳定性等。在国内外学术刊物上发表论文20余篇,SCI收录10余篇,授权发明专利3项。sxq_msc@nuaa.edu.cn   
作者简介:  陈恩光,2020年6月毕业于河南科技大学,获得工学学士学位。现为南京航空航天大学材料科学与技术学院硕士研究生,在傅仁利教授的指导下主要从事微电子封装领域的研究。
引用本文:    
陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
CHEN Enguang, SU Xinqing, XUE Songbai, CHEN Xudong, FU Renli, ZHANG Xiaotian, CHENG Bo, WANG Changhong, WANG Mingwei. Microstructure and Properties of GH3128/Al2O3 Joint Brazed via Reactive Air Brazing with Ag-CuO-NiO-LiAlSiO4 Composite Filler. Materials Reports, 2024, 38(2): 22090003-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090003  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22090003
1 Esposito L, Bellosi A, Guicciardi S, etal. Journal of Materials Science, 1998, 33(7), 1827.
2 Yu X Q, Ma Z P, Zhang Y, et al. Ordnance Materials Science and Engineering, 2021, 44(1), 7(in Chinese).
于心泷, 马志鹏, 张妍, 等. 兵器材料科学与工程, 2021, 44(1), 7.
3 Bai J, Yang X, Xu S, et al. Scripta Materialia, 2013, 68(6), 393.
4 Sang S, Li D, Wang C, et al. Materials Science and Engineering A, 2019, 768, 138431.
5 Feng Z W, Gao T F, Shao T W, et al. Transactions of the China Welding Institution, 2015, 36(12), 105(in Chinese).
冯贞伟, 高腾飞, 邵天威, 等. 焊接学报, 2015, 36(12), 105.
6 Li Z M, Qian S Q, Wang W, et al. Rare Metal Materials and Enginee-ring, 2012, 41(11), 1980(in Chinese).
李志明, 钱士强, 王伟, 等. 稀有金属材料与工程, 2012, 41(11), 1980.
7 Wang Z Q, Cao J, Si X Q, et al. 2018, 10(1), 1(in Chinese).
王志权, 曹健, 司晓庆, 等. 精密成形工程, 2018, 10(1), 1.
8 Zhang L X, Lei M, Yang Z Y, et al. Rare Metal Materials and Enginee-ring, 2017, 46(11), 6(in Chinese).
张丽霞, 雷敏, 杨智烨, 等. 稀有金属材料与工程, 2017, 46(11), 6.
9 Ji Y R, Fu R L, Lv J L, et al. Ceramics International, 2020, 46(8), 12806.
10 Chen H, Ren X, Guo W, et al. Journal of Manufacturing Processes, 2020, 56, 735.
11 Lv J L, Huang Y L, Fu R L, et al. Journal of the European Ceramic Society, 2020, 40( 15), 5332.
12 Luo Y, Song X G, Hu S P, et al. Journal of the European Ceramic Society, 2021, 41, 1407.
13 Kim M D, Wahid Muhamad F R, Raju K, et al. Journal of the Korean Ceramic Society, 2018, 55(5), 492.
14 Zhao W, Zhang S, Yang J, et al. Journal of Materials Research and Technology, 2021, 10, 1158.
15 Luo Y, Hu S P, Li Z H, et al. Journal of Mechanical Engineering, 2020, 56(6), 7(in Chinese).
罗云, 胡胜鹏, 李子寒, 等. 机械工程学报, 2020, 56(6), 7
16 Wang T, Sun M, Li H, et al. Journal of Physics: Conference Series, 2021, 2125(1), 012071.
17 Zhang J, Liu J Y, Wang T P. Journal of Materials Science & Technology, 2018, 34(4), 713.
18 Zhang S, Yuan Y, Su Y, et al. Journal of Alloys and Compounds, 2017, 719, 108.
19 Chen H Y, Wang X C, Fu L, et al. Vacuum, 2018, 156, 256.
20 Shi Keshun. Journal of the Chinese Ceramic Society, 2009, 37(5), 682.
21 Qian Q, Liu X K, Wang L L, et al. The World of Building Materials, 2022, 43(2), 4(in Chinese).
钱潜, 刘小康, 王路路, 等. 建材世界, 2022, 43(2), 4.
22 Zhang W. Acta Mineralogica Sinica, 2016, 36(1), 80(in Chinese).
张巍. 矿物学报, 2016, 36(1), 80.
23 Yang R C, Lyu X F, Zhao L M, et al. Journal of Lanzhou University of Technology, 2006, 32(6), 16(in Chinese).
杨瑞成, 吕学飞, 赵丽美, 等. 兰州理工大学学报, 2006, 32(6), 16.
24 Gui X Y, Zhang M F, Xu P H, et al. Journal of the European Ceramic Society, 2022, 42, 432.
25 Eustathopoulos N. Acta Materialia, 1998, 46(7), 2319.
26 Xue Y H, Jiang J B, Zhang H, et al. Materials Reports, 2020, 34(5), 10(in Chinese).
薛耀辉, 蒋军彪, 张辉, 等. 材料导报, 2020, 34(5), 10.
[1] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[2] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[3] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[4] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[5] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[6] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[7] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[8] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[9] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[10] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[11] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[12] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[13] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[14] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[15] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed