Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22030203-8    https://doi.org/10.11896/cldb.22030203
  无机非金属及其复合材料 |
铅炭电池负极添加剂研究进展
谢发之1,*, 宋恒帅1, 张道德1, 杨少华2, 张梦1, 方亮2, 邵永刚2
1 安徽建筑大学材料与化学工程学院,合肥 230601
2 安徽艾克瑞德科技有限公司,安徽 黄山 242700
Research Progress of Additives for Lead-Carbon Battery Anodes
XIE Fazhi1,*, SONG Hengshuai1, ZHANG Daode1, YANG Shaohua2, ZHANG Meng1, FANG Liang2, SHAO Yonggang2
1 School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China
2 Anhui Accord Science and Technology Co., Ltd., Huangshan 242700, Anhui, China
下载:  全 文 ( PDF ) ( 12708KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铅炭电池是在铅酸电池研究的基础上,选取具有多孔、高比表面积的碳材料作为负极材料添加剂来进一步提高性能的电池。碳材料为电池放电过程中产生的硫酸铅 (PbSO4) 提供更多反应界面,从而抑制硫酸盐化,使电池循环寿命得以延长,但碳较低的析氢过电位会带来析氢速率过快的问题。目前,铅炭电池负极添加剂开始由不同结构碳材料及析氢抑制剂的研究转向复合型材料研究,如碳与铅型复合材料、碳与导电聚合物型复合材料以及碳与析氢抑制剂型复合材料等,其主要目的是在延长电池循环使用寿命的同时,能够有效解决碳材料带来的析氢速率过快及铅与添加剂相容性差的问题。本文主要综述了近年来铅炭电池负极添加剂的研究进展,分别对碳添加剂、析氢抑制剂以及复合材料添加剂进行归纳分析,并结合目前实际发展情况分析了未来铅炭电池发展可能遇到的问题及研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢发之
宋恒帅
张道德
杨少华
张梦
方亮
邵永刚
关键词:  铅炭电池  硫酸盐化  碳材料  析氢抑制剂  复合材料  循环寿命    
Abstract: High performance lead-carbon batteries are developed from lead-acid batteries; carbon materials, which are porous with a high specific surface area, are selected as negative additives. Carbon materials provide reaction surfaces for lead sulfate (PbSO4) produced during battery discharge, which can inhibit sulfation and prolong the cycle life of the batteries. However, the low hydrogen evolution potential of carbon results in an excessive hydrogen evolution rate. Recently, the focus of research on anode additives of lead-carbon batteries was moved from carbon materials with different structures and hydrogen evolution inhibitors to various carbon composite materials (e.g., C/Pb, C/conductive polymer, and C/H evolution inhibitor). The primary reason is that the addition of carbon composite materials can effectively solve the problems of rapid hydrogen evolution caused by carbon materials and poor compatibility between lead and additives, while prolonging the cycle life of batteries. This paper mainly reviews the research progress of negative electrode additives for lead-carbon batteries in recent years and analyses carbon additives, hydrogen evolution inhibitors, and composite additives. Further, the problems that may be encountered in the future are detailed and possible research directions are outlined.
Key words:  lead-carbon battery    sulfation    carbon materials    hydrogen evolution inhibitors    composites    cycle life
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TM912  
基金资助: 安徽省教育厅高校自然科学研究项目 (KJ2018ZD049)
通讯作者:  * 谢发之,安徽建筑大学材料与化学工程学院教授、硕士研究生导师。目前主要从事功能材料与储能技术研究以及水污染控制、污染物监测等研究工作。发表学术论文62篇,其中SCI、EI 39篇;获国家发明专利6项。fzxie@ahjzu.edu.cn   
引用本文:    
谢发之, 宋恒帅, 张道德, 杨少华, 张梦, 方亮, 邵永刚. 铅炭电池负极添加剂研究进展[J]. 材料导报, 2023, 37(22): 22030203-8.
XIE Fazhi, SONG Hengshuai, ZHANG Daode, YANG Shaohua, ZHANG Meng, FANG Liang, SHAO Yonggang. Research Progress of Additives for Lead-Carbon Battery Anodes. Materials Reports, 2023, 37(22): 22030203-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030203  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22030203
1 Tang Y, Yue F, Guo K M, et al. Energy Storage Science and Technology, 2022, 11(1), 359 (in Chinese).
汤匀, 岳芳, 郭楷模, 等. 储能科学与技术, 2022, 11(1), 359.
2 Ma Y B. Electronic Technology and Software Engineering, 2020, 185(15), 229 (in Chinese).
马跃波. 电子技术与软件工程, 2020, 185(15), 229.
3 Lin L, Pei B, Liu F, et al. Marine Electric Electronic Engineering, 2018, 38(6), 45 (in Chinese).
林立, 裴波, 刘飞, 等. 船电技术, 2018, 38(6), 45.
4 Liang Z C, Shen H, Li J H. Energy Engineering, 2000(4), 8 (in Chinese).
梁宗存, 沈辉, 李戬洪. 能源工程, 2000(4), 8.
5 Zhang J S, Hu Z H, Wang M L, et al. New Chemical Materials, 2016(11), 1 (in Chinese).
张敬爽, 胡湛晗, 王美丽, 等. 化工新型材料, 2016(11), 1.
6 Liu Z Y, Qiao X S, Fan X P. Laser and Optoelectronics Progress, 2021, 58(15), 1516010 (in Chinese).
刘芷谕, 乔旭升, 樊先平. 激光与光电子学进展, 2021, 58(15), 1516010.
7 Shapira R, Nessim G D, Zimrin T, et al. Energy and Environmental Science, 2013, 6(2), 587.
8 Ding L X, Zheng F L, Wang J W, et al. Chemical Communications, 2012, 48(9), 1275.
9 Kwon Y, Lee H, Lee J. Nanoscale, 2011, 3(12), 4984.
10 Jiang X, Wang Y, Herricks T, et al. Journal of Materials Chemistry, 2004, 14(4), 695.
11 Lian J L, Wang D L, Yan J, et al. Power Demand Side Management, 2017, 19(3), 21 (in Chinese).
廉嘉丽, 王大磊, 颜杰, 等. 电力需求侧管理, 2017, 19(3), 21.
12 Zhang W, Yang J K, Wu X, et al. Renewable and Sustainable Energy Reviews, 2016, 61, 108.
13 Salomone R, Mondello F, Lanuzza F, et al. Environmental Management, 2005, 35(2), 206.
14 Lopes P P, Stamenkovic V R. Science, 2020, 369, 923.
15 Yang H. Preparation of carbon-based composites for the negative plate of lead-acid batteries and study on theirs mechanisms. Master's Thesis, Huazhong University of Science and Technology, China, 2017 (in Chinese).
杨欢. 铅酸电池负极碳基复合材料的制备及其作用机理. 硕士学位论文, 华中科技大学, 2017.
16 Huang W G, Liu X W, Chen L, et al. Chinese LABAT Man, 2018, 55(5), 220 (in Chinese).
黄伟国, 刘孝伟, 陈理, 等. 蓄电池, 2018, 55(5), 220.
17 Wang L Y, Zhang H, Cao G P, et al. Electrochimica Acta, 2015, 186, 654.
18 Pavlov D, Nikolov P. Journal of Power Sources, 2013, 242, 380.
19 Zhang T R, Zhao H M, Guo Z G, et al. Energy Storage Science and Technology, 2017, 6(6), 1217 (in Chinese).
张天任, 赵海敏, 郭志刚, 等. 储能科学与技术, 2017, 6(6), 1217.
20 Li X B, Zhang P P, He Y P, et al. Materials Reports, 2020, 34(3), 5039 (in Chinese).
李宵波, 张盼盼, 何亚鹏, 等. 材料导报, 2020, 34(3), 5039.
21 Dietz H, Radwan M, DöRing H, et al. Journal of Power Sources, 1993, 42, 89.
22 Ebner E, Burow D, Börger A, et al. Journal of Power Sources, 2013, 239, 483.
23 Chen P S, Hu Y T, Zhang X Y, et al. Journal of Electrochemistry, 2020, 26(6), 834 (in Chinese).
陈品松, 胡一涛, 张信义, 等. 电化学, 2020, 26(6), 834.
24 Saravanan M, Ganesan M, Ambalavanan S. Journal of Power Sources, 2014, 251, 20.
25 Zhao W, Shi G, Lin P, et al. Journal of South China Normal University (Natural Science Edition), 2017, 49(2), 34 (in Chinese).
赵微, 石光, 林鹏, 等. 华南师范大学学报:自然科学版, 2017, 49(2), 34.
26 Sun D L, Hu C, Wang H, et al. Battery Bimonthly, 2017, 47(5), 281 (in Chinese).
孙德龙, 胡晨, 汪浩, 等. 电池, 2017, 47(5), 281.
27 Liu, D C, Zhang W L, Lin H B, et al. Journal of Cleaner Production, 2016, 112, 1190.
28 Yin J. Synthesis of rice husk-derived hierarchical porous carbon-based additives and their application in negative electrodes of lead-carbon battery towards energy storage. Ph. D. Thesis, Jilin University, China, 2019 (in Chinese).
尹健. 生物质稻壳炭基添加剂的制备及其在储能铅炭电池负极中的应用研究. 博士学位论文, 吉林大学, 2019.
29 Wang Q Q, Chang S S, Tan Y J, et al. Protoplasma, 2019, 256, 1145.
30 Long L J. Pyrolysis of camellia oleifera shell and the preparation and cha-racterization of mesoporous activated carbon. Master's Thesis, Guangxi University, China, 2012 (in Chinese).
龙柳锦. 油茶果壳热解反应及其中孔活性炭的制备与表征. 硕士学位论文, 广西大学, 2012.
31 Han B. Preparation and application of activated carbon based on rice-straw. Master's Thesis, Donghua University, China, 2009 (in Chinese).
韩彬. 稻草秸秆基活性炭的制备与应用. 硕士学位论文, 东华大学, 2009.
32 Wang H, Liu Z, Liang Q Q, et al. Journal of Cleaner Production, 2018, 197, 332.
33 Ma Y Z. Study on the Preparation and electrochemical performance of humic acids based spherical porous carbon. Master's Thesis, Tianjin University, China, 2017 (in Chinese).
马玉柱. 腐殖酸基球形多孔碳的制备及其电化学性能的研究. 硕士学位论文, 天津大学, 2017.
34 Cui J C. Preparation of activated carbon from cotton stalk and its adsorption capability. Master's Thesis, Tarim University, China, 2017 (in Chinese).
崔纪成. 棉秆基活性炭的制备及其吸附性研究. 硕士学位论文, 塔里木大学, 2017.
35 Yin J, Lin N, Lin Z Q, et al. The Journal of Energy Storage, 2019, 24, 100756.
36 Shen C Q, Feng C, Zhang N Q, et al. Journal of Power Sources, 2021, 516, 230664.
37 Wang L Y, Zhang H, Zhang W F, et al. Chemical Engineering Journal, 2018, 337, 201.
38 Zhang W L, Liu D C, Lin H B, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 294.
39 Chen L, Huang W G, Liu X W, et al. Chinese LABAT Man, 2019, 56(4), 167 (in Chinese).
陈理, 黄伟国, 刘孝伟, 等. 蓄电池, 2019, 56(4), 167.
40 Wang K L, Xu M, Gu Z G, et al. International Journal of Hydrogen Energy, 2016, 41(30), 13109.
41 Wang K L, Cao Y H, Wang X M, et al. Journal of Power Sources, 2016, 307, 462.
42 Wang R F, Wang K L, Wang H, et al. International Journal of Hydrogen Energy, 2013, 38(14), 5783.
43 Hong B, Yu X Y, Jiang L X, et al. RSC Advances, 2014, 4(63), 33574.
44 Wang F. Studies on hydrogen evolution inhibition and its mechanisms of negative for lead-carbon batteries. Master's Thesis, Huazhong University of Science and Technology, China, 2016 (in Chinese).
王峰. 抑制铅炭电池负极析氢及其机理的研究. 硕士学位论文, 华中科技大学, 2016.
45 Wang F, Hu C, Lian J L, et al. RSC Advances, 2017, 7, 4174.
46 Wang F, Hu C, Zhou M, et al. Materials Science, 2016, 61(6), 451.
47 Hu J C, Wu C B, Wang X L, et al. International Journal of Electroche-mical Science, 2016, 11(2), 1416.
48 Xu L, Zhu P X, Yuan Y Y, et al. Battery Bimonthly, 2008, 38(1), 50 (in Chinese).
许磊, 竺培显, 袁宜耀, 等. 电池, 2008, 38(1), 50.
49 Chen H Y, Wu L, Ren C, et al. Journal of Power Sources, 2001, 95, 108.
50 Lam L T, Haigh N P, Rand D A J. Journal of Power Sources, 2000, 88(1), 11.
51 Zhu H. Preparation and hydration evolution inhibitors of lead-carbon electrode. Master's Thesis, Harbin Institute of Technology, China, 2014 (in Chinese).
朱浩. 铅碳电极的制备及其析氢抑制剂的研究. 硕士学位论文, 哈尔滨工业大学, 2014.
52 Zhao L, Chen B S, Wang D L. Journal of Power Sources, 2013, 231, 34.
53 Long L, Shi L Y, Zou X P, et al. Chinese LABAT Man, 2014, 51(5), 195 (in Chinese).
龙璐, 施利勇, 邹献平, 等. 蓄电池, 2014, 51(5), 195.
54 Lian J L. Study of metal compounds as hydrogen evolution inhibitors for lead carbon battery anodes. Master's Thesis, Huazhong University of Science and Technology, China, 2017 (in Chinese).
廉嘉丽. 金属化合物基铅炭电池负极析氢抑制剂的研究. 硕士学位论文, 华中科技大学, 2017.
55 Zhao L, Chen B S, Wu J Z, et al. Journal of Power Sources, 2014, 248, 1.
56 Prengaman R D. Journal of Power Sources, 2005, 144(2), 426.
57 Lam L T, Ceylan H, Haigh N P, et al. Journal of Power Sources, 2010, 195(14), 4494.
58 Xiang J Y, Hu C, Chen L Y, et al. Journal of Power Sources, 2016, 328, 8.
59 Deyab M A. RSC Advances, 2015, 5(52), 41365.
60 Meisenberg G and Simmons W H. Principles of medical biochemistry (3rd ed.), Saunders-Elsevier, UK, 2011, pp. 608.
61 Zhao L, Zhou W, Shao Y B, et al. RSC Advances, 2014, 4(83), 44152.
62 Yin J, Lin Z Q, Liu D B, et al. Journal of Electroanalytical Chemistry, 2019, 832, 152.
63 Chen Z S, Liu Z, Ai H T, et al. Rare Metal Materials and Engineering, 2020, 49(10), 3612 (in Chinese).
陈则胜, 刘峥, 艾慧婷, 等. 稀有金属材料与工程, 2020, 49(10), 3612.
64 Xu Q Q, Ma G Z, Wu B Z, et al. Journal of South China Normal University (Natural Science Edition), 2020, 52(2), 46 (in Chinese).
徐绮勤, 马国正, 吴宝珠, 等. 华南师范大学学报(自然科学版), 2020, 52(2), 46.
65 Chen G F, Liu Z Q, Lin J M, et al. Journal of Power Sources, 2015, 283, 484.
66 Yan X S, Zhang X D, Liu H L, et al. Synthetic Metals, 2014, 196, 1.
67 Fan L Q, Liu G J, Wu J H, et al. Electrochimica Acta, 2014, 137, 26.
68 Chang H H, Chang C K, Tsai Y C, et al. Carbon, 2012, 50(6), 2331.
69 Liu Y, Wang H H, Zhou J, et al. Electrochimica Acta, 2013, 112, 44.
70 Zhang K, Zhang L L, Zhao X S, et al. Chemistry of Materials, 2010, 22(4), 1392.
71 Yang H, Qiu Y B, Guo X P. Electrochimica Acta, 2016, 215, 346.
72 Huang Y, Wei D, Zhu M H, et al. Chinese LABAT Man, 2016, 53(3), 106 (in Chinese).
黄毅, 魏迪, 朱明海, 等. 蓄电池, 2016, 53(3), 106.
73 Yin J, Lin N, Lin Z Q, et al. Journal of Electroanalytical Chemistry, 2019, 832, 266.
74 Zhang Y S, Asad A, Li J C, et al. The Journal of Energy Storage, 2021, 35, 102192.
75 Yang H, Qiu Y B, Guo X P, et al. Electrochimica Acta, 2017, 235, 409.
76 Hu Y C, Yang J K, Hu J P, et al. Advanced Functional Materials, 2018, 28(9), 1705294.
77 Zhang S K, Zhang H, Xue W H, et al. Electrochimica Acta, 2018, 290, 46.
78 Zhao R R, Zhao W, Zhang T R, et al. Journal of Electroanalytical Chemistry, 2018, 814, 38.
79 Liang Q Q, Liu Z, Ai H T, et al. CIESC Journal, 2020, 71(5), 2292 (in Chinese).
梁秋群, 刘峥, 艾慧婷, 等. 化工学报, 2020, 71(5), 2292.
80 Wang H, Liu Z, Li H Y, et al. International Journal of Electrochemical Science, 2018, 13(1), 136.
81 Hong B, Jiang L X, Xue H T, et al. Journal of Power Sources, 2014, 270, 332.
82 Gu J, Zhong J, Zhu K D, et al. Journal of Energy Storage, 2021, 33, 102082.
83 Du W, Wang X N, Sun X Q, et al. Journal of Electroanalytical Chemistry, 2018, 827, 213.
84 Zhang W L, Lin H B, Lin Z Q, et al. ChemSusChem, 2015, 8, 2114.
85 Li Y Y, Li Z S, Shen P K. Advanced Materials, 2013, 25(17), 2474.
86 Zhang S D, Liu J, Huang P P, et al. Science Bulletin, 2017, 62(12), 841.
87 Xu Z J, Ji T, Zhao L, et al. Acta Physico-Chimica Sinica, 2012, 28(2), 361 (in Chinese).
徐子颉, 吉涛, 赵蕾, 等. 物理化学学报, 2012, 28(2), 361.
88 Tao Y G, Ye L B, Pan J, et al. Journal of Hazardous Materials, 2009, 161, 718.
89 Sreejalekshmi K G, Krishnan K A, Anirudhan T S. Journal of Hazardous Materials, 2009, 161(2), 1506.
90 Milakin K A, Moravkova Z, Acharya U, et al. Polymer, 2021, 217, 123450.
91 Qu W D, Zhang S G, Dong K X, et al. Journal of Porous Materials, 2021, 28, 507.
92 Zhang H, Zhou Y J, Song X K. Progress in Chemistry, 2015, 27(2), 174 (in Chinese).
张慧, 周雅静, 宋肖锴. 化学进展, 2015, 27(2), 174.
93 Santos L H E, Branco J S C, Guimares I S, et al. Surface and Coatings Technology, 2015, 275, 26.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[4] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[5] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[6] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[7] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[8] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[9] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[10] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[11] 潘星辰, 郜红合, 陈旭辉, 朱子兴. 乘用车座椅材料加工工艺与结构设计[J]. 材料导报, 2023, 37(22): 22090290-7.
[12] 满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
[13] 程爱华, 谢倩祎. 基于油菜花粉模板制备Fe基复合材料及其催化特性[J]. 材料导报, 2023, 37(21): 22040339-6.
[14] 王晓楠, 冯德成. 纳米碳/水泥基复合材料研究进展[J]. 材料导报, 2023, 37(21): 22030088-16.
[15] 秦唯铭, 杜冰, 朱绍伟, 陈立明, 李卫国, 樊振华. 环境温度对长玻纤增强聚丙烯单向拉伸力学性能的影响[J]. 材料导报, 2023, 37(20): 22030014-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed