Research Progress of Additives for Lead-Carbon Battery Anodes
XIE Fazhi1,*, SONG Hengshuai1, ZHANG Daode1, YANG Shaohua2, ZHANG Meng1, FANG Liang2, SHAO Yonggang2
1 School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, China 2 Anhui Accord Science and Technology Co., Ltd., Huangshan 242700, Anhui, China
Abstract: High performance lead-carbon batteries are developed from lead-acid batteries; carbon materials, which are porous with a high specific surface area, are selected as negative additives. Carbon materials provide reaction surfaces for lead sulfate (PbSO4) produced during battery discharge, which can inhibit sulfation and prolong the cycle life of the batteries. However, the low hydrogen evolution potential of carbon results in an excessive hydrogen evolution rate. Recently, the focus of research on anode additives of lead-carbon batteries was moved from carbon materials with different structures and hydrogen evolution inhibitors to various carbon composite materials (e.g., C/Pb, C/conductive polymer, and C/H evolution inhibitor). The primary reason is that the addition of carbon composite materials can effectively solve the problems of rapid hydrogen evolution caused by carbon materials and poor compatibility between lead and additives, while prolonging the cycle life of batteries. This paper mainly reviews the research progress of negative electrode additives for lead-carbon batteries in recent years and analyses carbon additives, hydrogen evolution inhibitors, and composite additives. Further, the problems that may be encountered in the future are detailed and possible research directions are outlined.
1 Tang Y, Yue F, Guo K M, et al. Energy Storage Science and Technology, 2022, 11(1), 359 (in Chinese). 汤匀, 岳芳, 郭楷模, 等. 储能科学与技术, 2022, 11(1), 359. 2 Ma Y B. Electronic Technology and Software Engineering, 2020, 185(15), 229 (in Chinese). 马跃波. 电子技术与软件工程, 2020, 185(15), 229. 3 Lin L, Pei B, Liu F, et al. Marine Electric Electronic Engineering, 2018, 38(6), 45 (in Chinese). 林立, 裴波, 刘飞, 等. 船电技术, 2018, 38(6), 45. 4 Liang Z C, Shen H, Li J H. Energy Engineering, 2000(4), 8 (in Chinese). 梁宗存, 沈辉, 李戬洪. 能源工程, 2000(4), 8. 5 Zhang J S, Hu Z H, Wang M L, et al. New Chemical Materials, 2016(11), 1 (in Chinese). 张敬爽, 胡湛晗, 王美丽, 等. 化工新型材料, 2016(11), 1. 6 Liu Z Y, Qiao X S, Fan X P. Laser and Optoelectronics Progress, 2021, 58(15), 1516010 (in Chinese). 刘芷谕, 乔旭升, 樊先平. 激光与光电子学进展, 2021, 58(15), 1516010. 7 Shapira R, Nessim G D, Zimrin T, et al. Energy and Environmental Science, 2013, 6(2), 587. 8 Ding L X, Zheng F L, Wang J W, et al. Chemical Communications, 2012, 48(9), 1275. 9 Kwon Y, Lee H, Lee J. Nanoscale, 2011, 3(12), 4984. 10 Jiang X, Wang Y, Herricks T, et al. Journal of Materials Chemistry, 2004, 14(4), 695. 11 Lian J L, Wang D L, Yan J, et al. Power Demand Side Management, 2017, 19(3), 21 (in Chinese). 廉嘉丽, 王大磊, 颜杰, 等. 电力需求侧管理, 2017, 19(3), 21. 12 Zhang W, Yang J K, Wu X, et al. Renewable and Sustainable Energy Reviews, 2016, 61, 108. 13 Salomone R, Mondello F, Lanuzza F, et al. Environmental Management, 2005, 35(2), 206. 14 Lopes P P, Stamenkovic V R. Science, 2020, 369, 923. 15 Yang H. Preparation of carbon-based composites for the negative plate of lead-acid batteries and study on theirs mechanisms. Master's Thesis, Huazhong University of Science and Technology, China, 2017 (in Chinese). 杨欢. 铅酸电池负极碳基复合材料的制备及其作用机理. 硕士学位论文, 华中科技大学, 2017. 16 Huang W G, Liu X W, Chen L, et al. Chinese LABAT Man, 2018, 55(5), 220 (in Chinese). 黄伟国, 刘孝伟, 陈理, 等. 蓄电池, 2018, 55(5), 220. 17 Wang L Y, Zhang H, Cao G P, et al. Electrochimica Acta, 2015, 186, 654. 18 Pavlov D, Nikolov P. Journal of Power Sources, 2013, 242, 380. 19 Zhang T R, Zhao H M, Guo Z G, et al. Energy Storage Science and Technology, 2017, 6(6), 1217 (in Chinese). 张天任, 赵海敏, 郭志刚, 等. 储能科学与技术, 2017, 6(6), 1217. 20 Li X B, Zhang P P, He Y P, et al. Materials Reports, 2020, 34(3), 5039 (in Chinese). 李宵波, 张盼盼, 何亚鹏, 等. 材料导报, 2020, 34(3), 5039. 21 Dietz H, Radwan M, DöRing H, et al. Journal of Power Sources, 1993, 42, 89. 22 Ebner E, Burow D, Börger A, et al. Journal of Power Sources, 2013, 239, 483. 23 Chen P S, Hu Y T, Zhang X Y, et al. Journal of Electrochemistry, 2020, 26(6), 834 (in Chinese). 陈品松, 胡一涛, 张信义, 等. 电化学, 2020, 26(6), 834. 24 Saravanan M, Ganesan M, Ambalavanan S. Journal of Power Sources, 2014, 251, 20. 25 Zhao W, Shi G, Lin P, et al. Journal of South China Normal University (Natural Science Edition), 2017, 49(2), 34 (in Chinese). 赵微, 石光, 林鹏, 等. 华南师范大学学报:自然科学版, 2017, 49(2), 34. 26 Sun D L, Hu C, Wang H, et al. Battery Bimonthly, 2017, 47(5), 281 (in Chinese). 孙德龙, 胡晨, 汪浩, 等. 电池, 2017, 47(5), 281. 27 Liu, D C, Zhang W L, Lin H B, et al. Journal of Cleaner Production, 2016, 112, 1190. 28 Yin J. Synthesis of rice husk-derived hierarchical porous carbon-based additives and their application in negative electrodes of lead-carbon battery towards energy storage. Ph. D. Thesis, Jilin University, China, 2019 (in Chinese). 尹健. 生物质稻壳炭基添加剂的制备及其在储能铅炭电池负极中的应用研究. 博士学位论文, 吉林大学, 2019. 29 Wang Q Q, Chang S S, Tan Y J, et al. Protoplasma, 2019, 256, 1145. 30 Long L J. Pyrolysis of camellia oleifera shell and the preparation and cha-racterization of mesoporous activated carbon. Master's Thesis, Guangxi University, China, 2012 (in Chinese). 龙柳锦. 油茶果壳热解反应及其中孔活性炭的制备与表征. 硕士学位论文, 广西大学, 2012. 31 Han B. Preparation and application of activated carbon based on rice-straw. Master's Thesis, Donghua University, China, 2009 (in Chinese). 韩彬. 稻草秸秆基活性炭的制备与应用. 硕士学位论文, 东华大学, 2009. 32 Wang H, Liu Z, Liang Q Q, et al. Journal of Cleaner Production, 2018, 197, 332. 33 Ma Y Z. Study on the Preparation and electrochemical performance of humic acids based spherical porous carbon. Master's Thesis, Tianjin University, China, 2017 (in Chinese). 马玉柱. 腐殖酸基球形多孔碳的制备及其电化学性能的研究. 硕士学位论文, 天津大学, 2017. 34 Cui J C. Preparation of activated carbon from cotton stalk and its adsorption capability. Master's Thesis, Tarim University, China, 2017 (in Chinese). 崔纪成. 棉秆基活性炭的制备及其吸附性研究. 硕士学位论文, 塔里木大学, 2017. 35 Yin J, Lin N, Lin Z Q, et al. The Journal of Energy Storage, 2019, 24, 100756. 36 Shen C Q, Feng C, Zhang N Q, et al. Journal of Power Sources, 2021, 516, 230664. 37 Wang L Y, Zhang H, Zhang W F, et al. Chemical Engineering Journal, 2018, 337, 201. 38 Zhang W L, Liu D C, Lin H B, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 294. 39 Chen L, Huang W G, Liu X W, et al. Chinese LABAT Man, 2019, 56(4), 167 (in Chinese). 陈理, 黄伟国, 刘孝伟, 等. 蓄电池, 2019, 56(4), 167. 40 Wang K L, Xu M, Gu Z G, et al. International Journal of Hydrogen Energy, 2016, 41(30), 13109. 41 Wang K L, Cao Y H, Wang X M, et al. Journal of Power Sources, 2016, 307, 462. 42 Wang R F, Wang K L, Wang H, et al. International Journal of Hydrogen Energy, 2013, 38(14), 5783. 43 Hong B, Yu X Y, Jiang L X, et al. RSC Advances, 2014, 4(63), 33574. 44 Wang F. Studies on hydrogen evolution inhibition and its mechanisms of negative for lead-carbon batteries. Master's Thesis, Huazhong University of Science and Technology, China, 2016 (in Chinese). 王峰. 抑制铅炭电池负极析氢及其机理的研究. 硕士学位论文, 华中科技大学, 2016. 45 Wang F, Hu C, Lian J L, et al. RSC Advances, 2017, 7, 4174. 46 Wang F, Hu C, Zhou M, et al. Materials Science, 2016, 61(6), 451. 47 Hu J C, Wu C B, Wang X L, et al. International Journal of Electroche-mical Science, 2016, 11(2), 1416. 48 Xu L, Zhu P X, Yuan Y Y, et al. Battery Bimonthly, 2008, 38(1), 50 (in Chinese). 许磊, 竺培显, 袁宜耀, 等. 电池, 2008, 38(1), 50. 49 Chen H Y, Wu L, Ren C, et al. Journal of Power Sources, 2001, 95, 108. 50 Lam L T, Haigh N P, Rand D A J. Journal of Power Sources, 2000, 88(1), 11. 51 Zhu H. Preparation and hydration evolution inhibitors of lead-carbon electrode. Master's Thesis, Harbin Institute of Technology, China, 2014 (in Chinese). 朱浩. 铅碳电极的制备及其析氢抑制剂的研究. 硕士学位论文, 哈尔滨工业大学, 2014. 52 Zhao L, Chen B S, Wang D L. Journal of Power Sources, 2013, 231, 34. 53 Long L, Shi L Y, Zou X P, et al. Chinese LABAT Man, 2014, 51(5), 195 (in Chinese). 龙璐, 施利勇, 邹献平, 等. 蓄电池, 2014, 51(5), 195. 54 Lian J L. Study of metal compounds as hydrogen evolution inhibitors for lead carbon battery anodes. Master's Thesis, Huazhong University of Science and Technology, China, 2017 (in Chinese). 廉嘉丽. 金属化合物基铅炭电池负极析氢抑制剂的研究. 硕士学位论文, 华中科技大学, 2017. 55 Zhao L, Chen B S, Wu J Z, et al. Journal of Power Sources, 2014, 248, 1. 56 Prengaman R D. Journal of Power Sources, 2005, 144(2), 426. 57 Lam L T, Ceylan H, Haigh N P, et al. Journal of Power Sources, 2010, 195(14), 4494. 58 Xiang J Y, Hu C, Chen L Y, et al. Journal of Power Sources, 2016, 328, 8. 59 Deyab M A. RSC Advances, 2015, 5(52), 41365. 60 Meisenberg G and Simmons W H. Principles of medical biochemistry (3rd ed.), Saunders-Elsevier, UK, 2011, pp. 608. 61 Zhao L, Zhou W, Shao Y B, et al. RSC Advances, 2014, 4(83), 44152. 62 Yin J, Lin Z Q, Liu D B, et al. Journal of Electroanalytical Chemistry, 2019, 832, 152. 63 Chen Z S, Liu Z, Ai H T, et al. Rare Metal Materials and Engineering, 2020, 49(10), 3612 (in Chinese). 陈则胜, 刘峥, 艾慧婷, 等. 稀有金属材料与工程, 2020, 49(10), 3612. 64 Xu Q Q, Ma G Z, Wu B Z, et al. Journal of South China Normal University (Natural Science Edition), 2020, 52(2), 46 (in Chinese). 徐绮勤, 马国正, 吴宝珠, 等. 华南师范大学学报(自然科学版), 2020, 52(2), 46. 65 Chen G F, Liu Z Q, Lin J M, et al. Journal of Power Sources, 2015, 283, 484. 66 Yan X S, Zhang X D, Liu H L, et al. Synthetic Metals, 2014, 196, 1. 67 Fan L Q, Liu G J, Wu J H, et al. Electrochimica Acta, 2014, 137, 26. 68 Chang H H, Chang C K, Tsai Y C, et al. Carbon, 2012, 50(6), 2331. 69 Liu Y, Wang H H, Zhou J, et al. Electrochimica Acta, 2013, 112, 44. 70 Zhang K, Zhang L L, Zhao X S, et al. Chemistry of Materials, 2010, 22(4), 1392. 71 Yang H, Qiu Y B, Guo X P. Electrochimica Acta, 2016, 215, 346. 72 Huang Y, Wei D, Zhu M H, et al. Chinese LABAT Man, 2016, 53(3), 106 (in Chinese). 黄毅, 魏迪, 朱明海, 等. 蓄电池, 2016, 53(3), 106. 73 Yin J, Lin N, Lin Z Q, et al. Journal of Electroanalytical Chemistry, 2019, 832, 266. 74 Zhang Y S, Asad A, Li J C, et al. The Journal of Energy Storage, 2021, 35, 102192. 75 Yang H, Qiu Y B, Guo X P, et al. Electrochimica Acta, 2017, 235, 409. 76 Hu Y C, Yang J K, Hu J P, et al. Advanced Functional Materials, 2018, 28(9), 1705294. 77 Zhang S K, Zhang H, Xue W H, et al. Electrochimica Acta, 2018, 290, 46. 78 Zhao R R, Zhao W, Zhang T R, et al. Journal of Electroanalytical Chemistry, 2018, 814, 38. 79 Liang Q Q, Liu Z, Ai H T, et al. CIESC Journal, 2020, 71(5), 2292 (in Chinese). 梁秋群, 刘峥, 艾慧婷, 等. 化工学报, 2020, 71(5), 2292. 80 Wang H, Liu Z, Li H Y, et al. International Journal of Electrochemical Science, 2018, 13(1), 136. 81 Hong B, Jiang L X, Xue H T, et al. Journal of Power Sources, 2014, 270, 332. 82 Gu J, Zhong J, Zhu K D, et al. Journal of Energy Storage, 2021, 33, 102082. 83 Du W, Wang X N, Sun X Q, et al. Journal of Electroanalytical Chemistry, 2018, 827, 213. 84 Zhang W L, Lin H B, Lin Z Q, et al. ChemSusChem, 2015, 8, 2114. 85 Li Y Y, Li Z S, Shen P K. Advanced Materials, 2013, 25(17), 2474. 86 Zhang S D, Liu J, Huang P P, et al. Science Bulletin, 2017, 62(12), 841. 87 Xu Z J, Ji T, Zhao L, et al. Acta Physico-Chimica Sinica, 2012, 28(2), 361 (in Chinese). 徐子颉, 吉涛, 赵蕾, 等. 物理化学学报, 2012, 28(2), 361. 88 Tao Y G, Ye L B, Pan J, et al. Journal of Hazardous Materials, 2009, 161, 718. 89 Sreejalekshmi K G, Krishnan K A, Anirudhan T S. Journal of Hazardous Materials, 2009, 161(2), 1506. 90 Milakin K A, Moravkova Z, Acharya U, et al. Polymer, 2021, 217, 123450. 91 Qu W D, Zhang S G, Dong K X, et al. Journal of Porous Materials, 2021, 28, 507. 92 Zhang H, Zhou Y J, Song X K. Progress in Chemistry, 2015, 27(2), 174 (in Chinese). 张慧, 周雅静, 宋肖锴. 化学进展, 2015, 27(2), 174. 93 Santos L H E, Branco J S C, Guimares I S, et al. Surface and Coatings Technology, 2015, 275, 26.