Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22030093-6    https://doi.org/10.11896/cldb.22030093
  高分子与聚合物基复合材料 |
镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究
满世甲, 杜雪岩*, 申永前, 龙建
兰州理工大学材料科学与工程学院,有色金属先进加工与再利用国家重点实验室,兰州 730050
Preparation and Microwave Absorption Properties of FPENS/PANI Composites
MAN Shijia, DU Xueyan*, SHEN Yongqian, LONG Jian
State Key Laboratory of Advanced Processing and Reuse of Nonferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 11907KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍渣含有多种有价金属元素,其综合利用研究越来越受到重视。从镍渣中回收的Fe3O4本身具有一定的吸波能力,但存在密度大、阻抗匹配差等缺点。本工作首先采用熔融氧化法、磁选及球磨法从镍渣中获得Fe3O4颗粒,然后采用原位氧化聚合法将其与苯胺复合制备镍渣衍生Fe3O4颗粒(FPENS)/聚苯胺(PANI)复合材料。对FPENS/PANI复合材料的物相组成、微观形貌及磁学性能进行表征,并研究了微波吸收性能和吸波机理。结果表明,FPENS/PANI复合材料中聚苯胺的相对含量对材料的吸波性能有较大的影响,当Fe3O4与苯胺的质量比为5∶1时,材料的最小反射损耗在15.8 GHz处达到-38.9 dB,匹配厚度为1.5 mm,有效带宽为4.24 GHz。FPENS/PANI复合材料对电磁波的损耗主要来源于磁损耗和介电损耗,其中磁损耗以自然共振和交换共振为主,介电损耗以偶极极化和界面极化为主。本工作为固废镍渣的综合利用提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
满世甲
杜雪岩
申永前
龙建
关键词:  镍渣  四氧化三铁  聚苯胺  复合材料  吸波性能    
Abstract: The comprehensive utilization of nickel slag has received more and more attention in recent years due to its contents of many valuable metal elements. Fe3O4 particles extracted from nickel slag exhibit a certain degree of microwave absorbing capability, but accompany the limits of high density and poor impedance matching. In this work, Fe3O4 particles were extracted from nickel slag by molten oxidation, magnetic separation and ball milling processes, and using them with aniline to prepare Fe3O4 particles extracted from nickel slag (FPENS)/polyaniline (PANI) composite by an in-situ oxidative polymerization method. The phase composition, microstructure and magnetic properties of the FPENS/PANI composite were characterized, and its microwave absorbing properties and absorbing mechanism of the composites were explored. The results show that the relative content of polyaniline in the FPENS/PANI composite material has a great influence on its absorption performance. When the mass ratio of Fe3O4 and polyaniline was 5∶1, the values of minimum reflection loss (RLmin) of the composite reached -38.9 dB at 15.8 GHz with the matching thickness of 1.5 mm and the effective bandwidth of 4.24 GHz. The loss of electromagnetic waves by the composite mainly comes from magnetic loss and dielectric loss, in which the magnetic loss is mainly dominated by natural resonance and exchange resonance, and the dielectric loss is mainly dominated by dipolar polarization and interface polarization. This work provides a new idea for the comprehensive utilization of nickel slag.
Key words:  nickel slag    magnetite    polyaniline    composites    microwave absorption
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TF09  
基金资助: 甘肃省重大科技专项(19ZD2GD001);甘肃省自然科学基金(21JR7RA222)
通讯作者:  * 杜雪岩,兰州理工大学材料科学与工程学院教授、博士研究生导师。2000年6月毕业于北京科技大学,获得博士学位。目前主要从事冶金固废综合利用、磁性复合材料及有机/无机复合功能材料的研究。发表论文110余篇,其中SCI收录60余篇;出版专著3部。duxy@lut.edu.cn   
作者简介:  满世甲,2016年6月于湖南科技大学获得工学学士学位。现为兰州理工大学材料科学与工程学院硕士研究生,在杜雪岩教授的指导下进行研究。目前主要研究领域为磁性复合材料。
引用本文:    
满世甲, 杜雪岩, 申永前, 龙建. 镍渣衍生Fe3O4/聚苯胺复合材料的制备及微波吸收性能研究[J]. 材料导报, 2023, 37(22): 22030093-6.
MAN Shijia, DU Xueyan, SHEN Yongqian, LONG Jian. Preparation and Microwave Absorption Properties of FPENS/PANI Composites. Materials Reports, 2023, 37(22): 22030093-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030093  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22030093
1 Ma Y B, Du X Y, Shen Y Y, et al. Multipurpose Utilization of Mineral Resources, 2018 (6), 25(in Chinese).
马泳波, 杜雪岩, 申莹莹, 等. 矿产综合利用, 2018 (6), 25.
2 Li B, Rong T L, Du X Y, et al. Ceramics International, 2021, 47(13), 18848.
3 Ma Y B, Du X Y, Shen Y Y, et al. Metals, 2017, 7(8), 321
4 Rehman S, Wang J M, Luo Q H, et al. Chemical Engineering Journal, 2019, 373, 122.
5 Liu P B, Gao S, Zhang G Z, et al. Advanced Functional Materials, 2021, 31(27), 2102812.
6 Zeng X J, Cheng X Y, Yu R H, et al. Carbon, 2020, 168, 606.
7 Ma M L, Li W T, Tong Z Y, et al. Journal of Colloid and Interface Science, 2020, 578, 58
8 Wang Y, Di X C, Lu Z, et al. Journal of Colloid and Interface Science, 2021, 589, 462.
9 Cao M, Deng Y X, Quan P, et al. Materials Reports, 2021, 35(10), 10029(in Chinese).
曹敏, 邓雨希, 全鹏, 等. 材料导报, 2021, 35(10), 10029.
10 Wang Y J, Huang W, Huang Y W, et al. Materials Reports, 2019, 33(10), 1624 (in Chinese).
王玉江, 黄威, 黄玉炜, 等. 材料导报, 2019, 33(10), 1624.
11 Liu J W, You W B, Yu J Y, et al. ACS Applied Nano Materials, 2019, 2(2), 910.
12 Ding J J, Wang L, Zhao Y H, et al. Small, 2019, 15(36), 1902885.
13 Liu Y, Chen Z, Xie W H, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(5), 5318.
14 Liu Z C, Xiang Z, Deng B W, et al. Composites Communications, 2020, 22, 100492.
15 Jiang J, Ai L H, Qin D B, et al. Synthetic Metals, 2009, 159(7-8), 695
16 Saini P, Choudhary V, Singh B P, et al. Materials Chemistry and Phy-sics, 2009, 113(2-3), 919.
17 Dong X L, Zhang X F, Huang H, et al. Applied Physics Letters, 2008, 92(1), 013127.
18 Xu P, Han X J, Wang C, et al. The Journal of Physical Chemistry B, 2008, 112(34), 10443.
19 Xu P, Han X J, Jiang J J, et al. The Journal of Physical Chemistry C, 2007, 111(34), 12603.
20 Zhang B, Du Y C, Zhang P, et al. Journal of Applied Polymer Science, 2013, 130(3), 1909.
21 Li Y B, Chen G, Li Q H, et al. Journal of Alloys and Compounds, 2011, 509(10), 4104.
22 Zhou W C, Hu X J, Bai X X, et al. ACS Applied Materials & Interfaces, 2011, 3(10), 3839.
23 Han D D, Xiao N R, Hu H, et al. RSC Advances, 2015, 5(82), 66667.
24 Joon S, Kumar R, Singh A P, et al. Materials Chemistry and Physics, 2015, 160, 87.
25 Yan P Z, Shen Y Q, Du X Y, et al. Materials, 2020, 13(9), 2162.
26 Zhang X F, Dong X L, Huang H, et al. Journal of Physics D: Applied Physics, 2007, 40(17), 5383.
27 Jiang J J, Li D, Geng D Y, et al. Nanoscale, 2014, 6(8), 3967.
28 Du Y C, Liu W W, Qiang R, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 12997.
29 Wu T, Liu Y, Zeng X, et al. ACS Applied Materials & Interfaces, 2016, 8(11), 7370.
30 Pu Y, Tao X, Zeng X F, et al. Journal of Magnetism and Magnetic Materials, 2010, 322(14), 1985.
31 Sun G B, Dong B X, Cao M H, et al. Chemistry of Materials, 2011, 23(6), 1587.
32 Cheng Y, Zhao H Q, Yang Z H, et al. Journal of Alloys and Compounds, 2018, 762, 463.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[4] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[5] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[6] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[7] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[8] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[9] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[10] 谢发之, 宋恒帅, 张道德, 杨少华, 张梦, 方亮, 邵永刚. 铅炭电池负极添加剂研究进展[J]. 材料导报, 2023, 37(22): 22030203-8.
[11] 潘星辰, 郜红合, 陈旭辉, 朱子兴. 乘用车座椅材料加工工艺与结构设计[J]. 材料导报, 2023, 37(22): 22090290-7.
[12] 程爱华, 谢倩祎. 基于油菜花粉模板制备Fe基复合材料及其催化特性[J]. 材料导报, 2023, 37(21): 22040339-6.
[13] 王晓楠, 冯德成. 纳米碳/水泥基复合材料研究进展[J]. 材料导报, 2023, 37(21): 22030088-16.
[14] 秦唯铭, 杜冰, 朱绍伟, 陈立明, 李卫国, 樊振华. 环境温度对长玻纤增强聚丙烯单向拉伸力学性能的影响[J]. 材料导报, 2023, 37(20): 22030014-6.
[15] 李美琪, 李晓飞, 王瑞涛, 聂林峰, 张润, 张冬海, 陈运法. 碳纤维增强聚合物基复合材料界面特性研究进展[J]. 材料导报, 2023, 37(20): 22030247-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed