Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22070260-8    https://doi.org/10.11896/cldb.22070260
  金属与金属基复合材料 |
压合衬套冷挤压强化的残余应力的数值模拟
林忠亮1,2,3, 白清顺1,*, 唐伟2,3, 吴保全1, 刘烨欣2,3, 兰洋2,3
1 哈尔滨工业大学机电工程学院,哈尔滨 150001
2 天津市紧固连接技术企业重点实验室,天津 300300
3 航天精工股份有限公司,天津 300300
Numerical Simulation on the Residual Stress of Compression Bushing in Cold Expansion Strengthening
LIN Zhongliang1,2,3, BAI Qingshun1,*, TANG Wei2,3, WU Baoquan1, LIU Yexin2,3, LAN Yang2,3
1 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
2 Tianjin Key Laboratory of Fastening Technology, Tianjin 300300, China
3 Aerospace Precision Products Co., Ltd., Tianjin 300300, China
下载:  全 文 ( PDF ) ( 13431KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 孔用衬套冷挤压强化的残余应力分布对实现优异的挤压效果起到重要的作用,而被挤压件材料和挤压量对挤压残余应力分布的影响显著。根据非线性接触摩擦理论,建立了基于压合衬套冷挤压强化的三维有限元模型,模拟获得了TB6钛合金、7050铝合金及TC4钛合金材料耳片孔强化的切向残余应力分布情况,并通过残余应力检测实验验证了有限元模拟的有效性;同时,研究了挤压量对耳片孔冷挤压强化残余应力状态的影响,揭示了切向残余应力沿着挤入面、中间面、挤出面以及衬套厚度方向的分布规律。研究结果表明:冷挤压孔强化后的残余应力在沿孔壁厚度方向上分布不均匀,切向残余压应力在中间面的分布区域最广;增大挤压量可以在一定程度上扩大压应力的分布范围,且能够提高区域压应力数值,但是也会引入部分拉应力,易产生褶皱现象;在相同的挤压条件下,TB6钛合金耳片冷挤压后所产生的切向残余压应力在应力数值和分布区域上都具有明显的优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林忠亮
白清顺
唐伟
吴保全
刘烨欣
兰洋
关键词:  压合衬套  冷挤压  孔强化  残余应力  挤压量    
Abstract: The residual stress distribution strengthened by cold expansion of hole bushing plays an important role in achieving excellent extrusion effect, while the material of compressed part and the interference value have a significant impact on the distribution of extrusion residual stress. According to the theory of non-linear contact friction, a three-dimensional finite element model based on cold expansion strengthening of compression bushing was established. The tangential residual stress distribution of lug was obtained with the simulation model in terms of various mate-rials, TB6 titanium alloy, 7050 aluminum alloy and TC4 titanium alloy. The model and simulation results were validated with the experiments of residual stress testing. Moreover, the influence of interference value on the residual stress state in cold extrusion strengthening was also explored. Results also revealed the distribution of tangential residual stress of the squeezed surface, the middle surface, the expansion surface and the bushing thickness direction. It is shown from the research results that the residual stress is unevenly distributed along the thickness of the hole wall after cold expansion and the tangential residual compressive stress has the widest distribution area in the middle surface. The increase of the interference value can expand the distribution range of compressive stress to some extent and increase the value of regional compressive stress. However, the increase of the interference value can also produce partial tension stress, leading to wrinkle effect. Under the same extrusion conditions, the tangential residual compressive stress produced by cold extrusion of TB6 titanium alloy lug has obvious advantages in stress value and distribution area.
Key words:  compression bushing    cold expansion    hole strengthening    residual stress    interference value
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TH131.3  
基金资助: 国家自然科学基金(52075129);天津市紧固连接技术企业重点实验室开放课题(TKLF2021-02-B-06)
通讯作者:  *白清顺,哈尔滨工业大学教授、博士研究生导师。1998年于哈尔滨工业大学机械工程专业获得工学学士学位,2000年于哈尔滨工业大学机械制造及其自动化学科获得工学硕士学位,2004年于哈尔滨工业大学机械制造及其自动化学科获得工学博士学位,毕业后留校任教。近年来,获得国家发明专利授权20余项,在国内外期刊上发表学术论文200余篇。主要研究方向为超精密加工与微纳制造、精密机械设计与制造等。Qshbai@hit.edu.cn   
作者简介:  林忠亮,2009年于天津理工大学获得工学学士学位,2014年于南开大学获得工程硕士学位。现为哈尔滨工业大学机电工程学院博士研究生、航天精工股份有限公司高级工程师。目前主要的研究领域为紧固件的研发、制造、检测等。
引用本文:    
林忠亮, 白清顺, 唐伟, 吴保全, 刘烨欣, 兰洋. 压合衬套冷挤压强化的残余应力的数值模拟[J]. 材料导报, 2024, 38(3): 22070260-8.
LIN Zhongliang, BAI Qingshun, TANG Wei, WU Baoquan, LIU Yexin, LAN Yang. Numerical Simulation on the Residual Stress of Compression Bushing in Cold Expansion Strengthening. Materials Reports, 2024, 38(3): 22070260-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070260  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22070260
1 Gopalakrishna H D, Narasimha M H N, Krishna M, et al. Engineering Failure Analysis, 2010, 17(2), 361.
2 Zhang T L, Wang Z, Song D C, et al. Journal of Mechanical Enginee-ring, 2021, 57(15), 71(in Chinese).
张铁亮, 王卓, 宋镝冲, 等. 机械工程学报, 2021, 57(15), 71.
3 Brown M A, Evans J L. International Journal of Fatigue, 2012, 44, 177.
4 Wang Y L, Zhu Y L, Cao Q, et al. Acta Aeronautica et Astronautica Si-nica, 2018, 39(2), 6(in Chinese).
王燕礼, 朱有利, 曹强, 等. 航空学报, 2018, 39(2), 6.
5 Qian X M, Jiang Y F, Guan H B, et al. Journal of Mechanical Strength, 2011, 33(5), 749(in Chinese).
钱晓明, 姜银方, 管海兵, 等. 机械强度, 2011, 33(5), 749.
6 Du X, Zhang T, He Y T, et al. Acta Aeronautica et Astronautica Sinica, 2019, 40(4), 268(in Chinese).
杜旭, 张腾, 何宇廷, 等. 航空学报, 2019, 40(4), 268.
7 Liu Y S, Shao X J, Liu J, et al. Materials & Design, 2010, 31, 1208.
8 Huo L B, Cao Z Q, Zhang F, et al. Journal of Northwestern Polytechnical University, 2018, 36(4), 701(inChinese).
霍鲁斌, 曹增强, 张帆, 等. 西北工业大学学报, 2018, 36(4), 701.
9 Zheng G, Cao Z Q, Zuo Y J. International Journal of Fatigue, 2021, 148, 106253.
10 Fan J, Li F G, Li J, et al. Rare Metal Materials and Engineering, 2012, 41(6), 978(in Chinese).
范娟, 李付国, 李江, 等. 稀有金属材料与工程, 2012, 41(6), 978.
11 Hu D Y, Li W Z, Liu H, et al. Journal of Aerospace Power, 2020, 35(11), 2241(in Chinese).
胡殿印, 李雯竹, 刘辉, 等. 航空动力学报, 2020, 35(11), 2241.
12 Liu H, Hu D Y, Wang R Q, et al. International Journal of Fatigue, 2020, 132, 105390.
13 Jin S Z, Hu D Y, Liu H, et al. Journal of Aerospace Power, 2020, 35(1), 30(in Chinese).
靳盛哲, 胡殿印, 刘辉, 等. 航空动力学报, 2020, 35(1), 30.
14 Nigrelli V, Pasta S. Journal of Materials Processing Technology, 2008, 205(1-3), 290.
15 Fu Y C, Ge E D, Su H H, et al. Chinese Journal of Aeronautics, 2015, 28(4), 961.
16 Miao H, Mei Q, Yuan J Y, et al. Chinese Journal of Mechanical Engineering, 2016, 29(3), 556.
17 Qiang C, Xia X S, Yuan B G, et al. Materials Science & Engineering A, 2013, 588, 395.
18 Zhu Y L, Hou S, Wang Y L, et al. Materials Science and Technology, 2015, 23(4), 87(in Chinese).
朱有利, 侯帅, 王燕礼, 等. 材料科学与工艺, 2015, 23(4), 87.
19 China Aviation Material Handbook Editorial Committee. China aviation material handbook, China Standard Press, China, 2001, pp.104(in Chinese).
中国航空材料手册编辑委员会. 中国航空材料手册, 中国标准出版社, 2001, pp.104.
20 Liu X L, Gao Y K, Liu Y T, et al. Journal of Aeronautical Materials, 2011, 31(2), 24(in Chinese).
刘晓龙, 高玉魁, 刘蕴韬, 等. 航空材料学报, 2011, 31(2), 24.
21 Zhang X H, Xu G Q, Nie L, et al. Materials Science and Technology, 2019, 27(4), 64(in Chinese).
张小辉, 许光群, 聂利, 等. 材料科学与工艺, 2019, 27(4), 64.
22 Cao Z Q, Hu C Y, Gan X D, et al. Journal of Mechanical Strength, 2016, 38(5), 1093(in Chinese).
曹增强, 胡朝阳, 甘学东, 等. 机械强度, 2016, 38(5), 1093.
23 Wang L Q, Bian J, Zhang H, et al. Journal of Aeronautical Materials, 2020, 40(6), 45(in Chinese).
王连庆, 卞江, 张晗, 等. 航空材料学报, 2020, 40(6), 45.
24 Huo L B, Cao Z Q, Cao Y J, et al. Aeronautical Manufacturing Techno-logy, 2018, 61(13), 74(in Chinese).
霍鲁斌, 曹增强, 曹跃杰, 等. 航空制造技术, 2018, 61(13), 74.
25 Cong Z, Cao Y, He Z H, et al. Science Technology and Engineering, 2021, 21(16), 6637(in Chinese).
从政, 曹岩, 贺志昊, 等. 科学技术与工程, 2021, 21(16), 6637.
[1] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[2] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[3] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[4] 陈栋梁, 雷子萱, 徐力, 陈双, 刘育红, 强军锋. 热熔酚醛树脂/玻璃纤维层压板的固化特性及工艺优化[J]. 材料导报, 2024, 38(16): 23050095-8.
[5] 罗军, 李楠, 王曦, 刘昌奎. 纳米压痕法测量航空发动机关键材料残余应力的研究进展[J]. 材料导报, 2024, 38(11): 22100300-13.
[6] 耿汝伟, 程延海, 杜军, 魏正英. 2319铝合金电弧增材制造温度场与应力演变研究[J]. 材料导报, 2023, 37(23): 22060214-8.
[7] 屈盛官, 翟荐硕, 段晨风, 孙朋飞, 李小强. TC4钛合金二维超声振动车削性能研究[J]. 材料导报, 2023, 37(22): 22040390-9.
[8] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[9] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[10] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[11] 周杰明, 黎建明, 李冬旭, 赵永田, 杨海, 魏乃光. 降低m-CVDZnS多晶残余应力的带压退火研究[J]. 材料导报, 2022, 36(8): 20110116-7.
[12] 李刚, 李中双, 符伟, 谭俊哲, 杨康. 焊接顺序对管状大厚度V形接头焊接残余应力场的影响[J]. 材料导报, 2021, 35(z2): 325-328.
[13] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[14] 初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
[15] 王力, 王海斗, 底月兰, 赵运才, 董丽虹, 李帅. 热障涂层应力产生机制及分布特征[J]. 材料导报, 2021, 35(17): 17143-17149.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed